We use cookies to help provide you with the best possible online experience. Learn more

Make your proton therapy plans robust to change

Proton therapy is a highly precise treatment method, which also makes it sensitive to change. RaySearch understands this, and we’ve designed the RayStation treatment planning system to account for every eventuality.

Market leading in particle therapy

Many particle centers worldwide are using RayStation for their proton plans. Probably because the unique features that RayStation is renowned for are also available for proton therapy. Highlights include:

  • Fast Monte Carlo dose computation on GPU (New!)
  • Robust optimization and evaluation
  • 4D-optimization
  • PBS optimization with apertures
  • Multi-criteria optimization with robustness
  • Fully integrated adaptive planning
  • Automatic creation of backup photon plans
  • Simulated organ motion
  • Interplay evaluation

We support proton therapy systems from IBA, Hitachi, Mevion, ProNova, Varian and Sumitomo, as well as synchrotrons. The system offers the full range of treatment options, including pencil beam scanning, double scattering, uniform scanning, line scanning and wobbling.

Case study at Texas Center for Proton Therapy

The implementation of treatment planning with 4D-robust optimization and Monte Carlo dose calculation in RayStation, combined with automated volumetric-repainting beam delivery developed at Texas Center for Proton Therapy, allows us to treat lung patients and other moving targets using PBS in a safe and efficient manner. In fact, approximately 15 percent of our current patients are now treated using these techniques.” Dr. Andrew K. Lee, Medical Director of Texas Center for Proton Therapy.

Watch a presentation from PTCOG

A comprehensive approach to lung treatment. In this first tutorial, you will get a general introduction to adaptive radiation therapy and on how to perform dose tracking in RayStation.

RayStation provides leading tools for designing and optimizing actively scanned pencil beams. Optimization strategies include our pioneering scenario based robust optimization, robust Multi Criteria Optimization, and robust 4D optimization. Accurate dose computation in optimization and final dose is achieved using our lightning fast GPU based Monte Carlo dose engine. RayStation also support PBS planning using patient specific apertures or MLC collimation. The robustness of the optimized plans can be assessed using the dedicated Plan Robustness Evaluation module.

  • GPU Monte Carlo dose engine for optimization and final dose
  • Pencil beam dose engine
  • Optimization of pencil beam scanning and line scanning using multi-field optimization and single field uniform dose techniques.
  • Robust optimization over multiple 4D-CT images, scenario-based optimization regarding uncertainties in range (density) and position (isocenter shifts, target shifts, etc.)
  • Full control of energy layer spacing and spot pattern
  • Layer repainting
  • Bragg peak visualization

PBS-specific features:

  • Step-and-shoot spot scanning
  • Optimization including lower and upper limits of spot MU delivery
  • Spot visualization with beam’s-eye-view and patient 2D/3D views
  • Manual editing of spot pattern
  • Spot weight filtering
  • Quasi-discrete PBS
  • Spot order sorting through scan path length optimization

Line scanning specific features:
  • Line segment visualization
  • Line segment filtering in optimization with beam’s-eye-view and patient 2D/3D views

Watch an introduction video to proton PBS in RayStation.

Watch a video about advanced proton planning in RayStation.

RayStation features a fast GPU based Monte Carlo dose engine for proton pencil beam scanning (PBS) plans, which can be used for final dose computation and optimization.

The Monte Carlo technique is based on simulating the transport of individual particles, which makes it possible to fully account for the unaltered patient geometry. The dose engine in RayStation strikes the optimal balance between accurate physics modeling and speed, making it highly effective in clinical workflows.

The Monte Carlo and pencil beam dose engines in RayStation are designed to be used in parallel, ensuring efficient and accurate dose calculation for all proton PBS planning needs. A single PBS machine model for a particular delivery system can support both the Monte Carlo and pencil beam dose calculations, and the beam-measurement data needed for commissioning is the same for both dose engines.

The Monte Carlo and pencil beam dose engines can both be used for calculating spot dose distributions as input for optimization, with or without patient-specific block apertures, as well as for calculating a final dose distribution for plan approval.   

  • Computation of final dose
  • Computation of dose for optimization
  • Termination criterion for final dose computation in the plan optimization module defined by statistical uncertainty level, or by number of simulated protons
Fill in your information and the document will be sent to you.

Your data is handled with discretion, read our privacy statement here

Simulated organ motion

The ability to simulate organ motion in RayStation strengthens the functionality of robust planning and plan evaluation even further. With the ability to generate simulated images for organ motion, the full effect of the changing anatomy can be evaluated without the need of acquiring multiple patient CT scans.

Sets of deformed images are generated based on motion expectation for user-selected ROI. The organ motion will affect the overall patient anatomy in cooperation with specified fixed areas. The generated group of motion image sets can be used for both evaluation and as input when planning robustly against intra-fractional or inter-fractional organ motion.

The RayStation® treatment planning system is specifically designed to make adaptive therapy faster and easier in clinical practice. It includes modules for dose tracking and adaptive re-planning.

We are also developing, in collaboration with IBA, an online adaptive workflow solution* where daily cone beam images are taken and matched to the planning CT for a particular patient. Based on the daily images, an updated treatment plan can be automatically suggested to the care team at the time of a treatment session. A plan adaptation that takes the patient’s current situation into account can thus be made before treatment delivery starts. This workflow benefits patients by allowing for more accurate treatments and faster plan adaptation.

*Subject to regulatory clearance in some markets.


Because RayStation is a complete treatment planning system that supports many different modalities, planning of proton treatments in conjunction with photons is possible. The fallback planning module also enables proton plans to be converted into photon plans, ensuring there is no interruption in treatment.

Provision Center for Proton Therapy

See how Provision Center for Proton Therapy achieve great results in Proton PBS with RayStation.