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Abstract

Geometric errors may compromise the quality of radiation therapy treat-
ments. Optimization methods that account for errors can reduce their effects.

The first paper of this thesis introduces minimax optimization to account
for systematic range and setup errors in intensity-modulated proton therapy.
The minimax method optimizes the worst case outcome of the errors within
a given set. It is applied to three patient cases and shown to yield improved
target coverage robustness and healthy structure sparing compared to con-
ventional methods using margins, uniform beam doses, and density override.
Information about the uncertainties enables the optimization to counterbal-
ance the effects of errors.

In the second paper, random setup errors of uncertain distribution—in
addition to the systematic range and setup errors—are considered in a frame-
work that enables scaling between expected value and minimax optimization.
Experiments on a phantom show that the best and mean case tradeoffs be-
tween target coverage and critical structure sparing are similar between the
methods of the framework, but that the worst case tradeoff improves with
conservativeness.

Minimax optimization only considers the worst case errors. When the
planning criteria cannot be fulfilled for all errors, this may have an adverse
effect on the plan quality. The third paper introduces a method for such cases
that modifies the set of considered errors to maximize the probability of sat-
isfying the planning criteria. For two cases treated with intensity-modulated
photon and proton therapy, the method increased the number of satisfied cri-
teria substantially. Grasping for a little less sometimes yields better plans.

In the fourth paper, the theory for multicriteria optimization is extended
to incorporate minimax optimization. Minimax optimization is shown to bet-
ter exploit spatial information than objective-wise worst case optimization,
which has previously been used for robust multicriteria optimization.

The fifth and sixth papers introduce methods for improving treatment
plans: one for deliverable Pareto surface navigation, which improves upon
the Pareto set representations of previous methods; and one that minimizes
healthy structure doses while constraining the doses of all structures not to
deteriorate compared to a reference plan, thereby improving upon plans that
have been reached with too weak planning goals.

Keywords: Optimization, intensity-modulated proton therapy, uncertainty,
robust planning, setup error, range error, intensity-modulated radiation ther-
apy, multicriteria optimization.
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Sammanfattning

Geometriska fel kan försämra kvaliteten på strålbehandlingar, men optimer-
ingsmetoder som tar hänsyn till felen kan minska deras effekt.

I denna avhandlings första artikel introduceras minimaxoptimering för
att ta hänsyn till systematiska fel på räckvidd och positionering i intensites-
modulerad protonterapi. Minimaxmetoden optimerar det värsta utfallet av
felen från en given mängd. Metoden prövas på tre patientfall. För dessa led-
er den till mer robust måltäckning och ökat riskorgansskydd jämfört med
konventionella metoder som använder marginaler, likformiga stråldoser och
ersatta densiteter. Information om osäkerheterna gör att optimeringen kan
motverka effekterna av fel.

I den andra artikeln betraktas slumpmässiga positioneringsfel av osäker
sannolikhetsfördelning – utöver de systematiska räckvidds- och positioner-
ingsfelen – i ett ramverk som möjliggör skalning mellan väntevärdes- och
minimaxoptimering. Experiment på ett fantom visar att avvägningen mellan
måltäckning och riskorgansskydd i det bästa fallet och i medelfallet är likar-
tad mellan metoderna från ramverket, men att avvägningen i värsta fallet
förbättras med graden av försiktighet.

Minimaxoptimering tar bara hänsyn till de värsta felen. Detta kan le-
da till att plankvaliteten blir lidande i fall där planeringsmålen inte går att
uppfylla för alla fel. I den tredje artikeln introduceras en metod för sådana
fall. Denna metod modifierar mängden av beaktade fel i syfte att maximera
sannolikheten att uppfylla planeringsmålen. För två fall behandlade med in-
tensitetsmodulerad foton- och protonterapi ledde metoden till en avsevärd
ökning av antalet uppfyllda mål. Sänkta krav på robustheten kan ibland leda
till bättre planer.

I den fjärde artikeln utökas teorin för flermålsoptimering till att innefat-
ta minimaxoptimering. Minimaxoptimering visas vara bättre på att utnyttja
spatiell information än målvis värsta fallet-optimering, vilket tidigare använts
för robust flermålsoptimering.

Artikel fem och sex introducerar metoder för att förbättra strålbehan-
dlingsplaner: en för levererbar navigering av Pareto-ytor, vilken förbättrar
tidigare metoders representationer av Pareto-mängder; och en som minimer-
ar doserna till friska strukturer under bivillkor att doserna till alla strukturer
inte försämras jämfört med en referensplan, för att på så sätt förbättra planer
som har tagits fram med för lågt satta mål.

Nyckelord: Optimering, intensitetsmodulerad protonterapi, osäkerhet, ro-
bustplanering, positioneringsfel, räckviddsfel, intensitetsmodulerad strålter-
api, flermålsoptimering.
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Introduction

It is estimated that every third person in Sweden will get cancer [68]. Half of
Swedish cancer patients receive radiation therapy during their illness [54]. The
quality of radiation therapy treatment is of high consequence.

This thesis concerns optimization approaches for radiation therapy in the pres-
ence of geometric uncertainty. It consists of an introduction and six appended
papers. The introduction first presents radiation therapy and relevant optimization
concepts. It then introduces optimization approaches to account for uncertainties
in radiation therapy. The considered uncertainties are mainly with respect to the
patient densities and the alignment of the patient relative to the beams. The topic of
facilitating decision making by multicriteria optimization accounting for geometric
uncertainty is also discussed, as is the problem of deliverability of plans obtained
by Pareto surface navigation. The introduction is concluded with a short summary
of the appended papers.

1 Radiation therapy

X-rays were discovered in 1895 by Wilhelm Röntgen. A few months after the
announcement of the discovery, x-rays were used to treat skin disease, and within
a year, the first accounts of using x-rays to treat cancer were reported. Thus was
the birth of radiation therapy.

Radiation therapy is the medical use of ionizing radiation. It is primarily used
to treat cancer. In most cases, radiation therapy is given with curative intent. It may
also be used in palliative care in cases where the cancer is too advanced for a cura-
tive treatment to be possible, but for which symptoms such as pain may be relieved.
Radiation therapy is used both as a stand-alone treatment and in combination with
other cancer treatments such as surgery and chemotherapy.

1



2 INTRODUCTION

Radiation therapy is delivered either by internal radiation sources (brachyther-
apy), which are placed inside or close to the region to be treated, or by external
sources (external beam radiation therapy). The latter is the most common form of
radiation therapy and is the form that this thesis concerns. In external beam radia-
tion therapy, the patient is irradiated by an external radiation source that directs the
radiation towards the region requiring treatment. The radiation is commonly deliv-
ered in the form of high-energy photon (x-ray), electron, or proton beams, but other
particles may also be used. In this thesis, photon and proton beams are considered.
Blocking material is used to shape the beams in order to conform the radiation to
the target. The superposition of radiation of several beams from different directions
enables high doses of radiation to the target while the doses to surrounding healthy
tissues can be kept low. Greater amounts of radiation delivered to the target than
to healthy tissues increases the probability of eradicating the tumor while sparing
critical organs and avoiding radiation-induced second cancers.

1.1 Radiobiology

For curative radiation therapy, the clonogenic cancer cells must be killed to an
extent that results in permanent tumor control. Radiation kills cells by damaging
the cellular DNA. Sufficient damage to the DNA of a cell disables the ability of the
cell to proliferate, ultimately leading to its death.

The cellular DNA is damaged by interaction with ionizing particles. As x-ray
photons pass through tissue, they interact with free electrons or electrons with neg-
ligible binding energy compared to the photon energy. In the interaction between
a photon and an electron, part of the photon energy is given to the electron in the
form of kinetic energy. The resulting fast-moving electron may damage the DNA
directly or indirectly. In direct action, the electron interacts with the DNA to pro-
duce damage. In indirect action, the electron interacts with other molecules, such
as water, to produce free radicals, which in turn damage the DNA. Since photon ra-
diation ionizes the absorber (in this case the DNA) via recoil electrons, it is said to
be indirectly ionizing. Proton radiation is directly ionizing; it has sufficient energy
to ionize the absorber directly.

Cancer cells generally have reduced ability to repair DNA damages compared
to healthy cells, and sublethal DNA damages that accumulate over time may even-
tually lead to lethal damages. Radiation therapy treatment is therefore typically
divided into a number (∼30) of treatment fractions that are delivered with daily
intervals (with breaks for the weekends). Between fractions, the DNA molecules
of healthy cells are repaired to a higher degree than those of cancer cells, and the
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healthy tissues often repopulate faster than the tumor tissue. Moreover, fraction-
ation allows the tumor cells to reassort into more radiosensitive phases of the cell
cycle, and allows for the reoxygenization of hypoxic tumor regions, which are re-
sistant to indirect action of radiation.

For more details concerning radiobiology, see, e.g., Hall and Giaccia [41].

1.2 Photon therapy

A photon therapy treatment is typically delivered by a gantry-mounted linear accel-
erator, which accelerates electrons onto a high-density bremsstrahlung target. This
results in the scattering of high-energy photons. The photons are filtered to produce
a uniform intensity distribution and leave the gantry through a gantry head. The
output of the accelerator is measured in monitor units (MUs), which are calibrated
such that 1 MU yields an absorbed dose of 1 cGy at a specific depth in water for
a standardized field. The gantry can be rotated about the patient, which enables
the delivery of photon fields from different directions. Photon fields from several
directions are combined to yield higher dose to the target than to the surrounding
tissues.

Collimating blocks made out of a shielding material such as tungsten are used
to shape the beam. Mounted on the gantry head are one or two pairs of opposing
blocks called jaws, which can create rectangular beam shapes. The gantry head
may further be equipped with a multileaf collimator (MLC), a device consisting of
two opposing rows of shielding leaves, which may individually move in and out
of the field to shape the beam. Figure 1 includes illustrations of MLCs. The jaws
and the MLC are used to conform the beam to the projection of the target volume
onto the beam plane. An arrangement of the jaws and the MLC leaves is called an
aperture.

Before the invention of three-dimensional (3D) imaging techniques such as
computed tomography (CT), two-dimensional (2D) x-ray images were used to plan
radiation therapy treatments. The beam setups were typically simple, consisting of
one to four beams. With 3D information, it has become practicable to use beams
from multiple angles, each shaped as its corresponding target projection. This type
of treatment is called 3D conformal radiation therapy (3DCRT), and enables more
conformal dose distributions than 2D planning.

An improvement over 3DCRT came with the introduction of varying fluence
over the cross-section of each beam. Such treatment is called intensity-modulated
radiation therapy (IMRT). In IMRT, the superposition of the fluences transmitted
through a succession of apertures forms a field of modulated fluence. Delivery
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where the beam is switched off while the MLC leaves move is called step-and-
shoot delivery. The combination of an aperture and a weight specifying the fraction
of the beam MU delivered through the aperture is called a segment, and the weight
is called the segment weight. Delivery where the leaves move during irradiation is
called dynamic MLC delivery. In this thesis, step-and-shoot delivery is considered.
Figure 1 illustrates an IMRT plan for a head and neck case treated with seven
equispaced beams.

Figure 1. An IMRT plan for a head and neck case. The MLCs shape the beams;
a series of MLC apertures for each beam yield the beam fluence distributions; and
the fluences from all beams result in the indicated dose distribution in the patient.

It was shown by Brahme et al. [15] and Brahme [14] that modulation of the
fluence within each field can yield dose distributions that conform closer to the
target than when only uniform beam fluences are used. This enables lower doses to
sensitive structures adjacent to the target. Clinical trials show that IMRT reduces
acute and late toxicity of healthy structures compared to 3DCRT; for a review, see
Staffurth et al. [88]. A drawback of IMRT is that larger volumes are exposed to low
doses, which may increase the risk of radiation-induced second malignancies [42,
64]. It also leads to prolonged treatment times and higher beam dose gradients,
which increase respectively the risk and the impact of geometric errors [64].

The evolution of photon therapy has been reviewed by Bucci et al. [18]. For
reviews of IMRT, see Bortfeld [12] and Ahnesjö et al. [2].

1.3 Proton therapy

A proton therapy treatment is delivered by a narrow proton beam extracted from a
particle accelerator. In pencil beam scanning of protons, steering magnets are used
to scan the narrow proton beam over the treatment volume. Pencil beam scanning



ROBUST OPTIMIZATION OF RADIATION THERAPY 5

may be contrasted to passive scattering techniques, in which the proton beam is
broadened by a scattering foil. In this thesis, pencil beam scanning, or intensity-
modulated proton therapy (IMPT), is considered.

Protons exhibit two key advantages over photons with respect to therapeutic
properties. First, a broad proton beam shows a significant increase in dose deposi-
tion at the end of the proton range. The region of increased dose is called the Bragg
peak. Beyond the Bragg peak, the dose deposition is negligible, which enables im-
proved sparing of healthy tissues behind the target compared to when photon beams
are used. Second, the depth of the Bragg peak can be controlled by alteration of the
energy of the incident protons. This amounts to an additional degree of freedom as
compared to photon therapy. The superposition of pencil beams of different ener-
gies allows for spread-out Bragg peaks that cover the full target volume in depth.
Depth-dose curves of proton pencil beams, a spread-out Bragg peak, and a photon
beam are illustrated in Figure 2. That the doses increase with depth until the end of
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Figure 2. Depth-dose curves of a 6 MV photon beam (red), a proton spread-out
Bragg peak (blue, thick), and the 135–200 MeV proton pencil beams constituting
the spread-out Bragg peak (blue, thin).

the proton range makes proton treatments feasible within fewer beams than photon
treatments. Figure 3 illustrates an IMPT plan for a head and neck case treated with
two beams.

The location of the Bragg peak is highly affected by the proton stopping power
of the traversed medium, which is the average energy loss of the protons per unit
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Figure 3. An IMPT plan for a head and neck case. For each beam, the fluence
distribution resulting from a specific energy is illustrated. The fluences from all
energies result in the indicated dose distribution in the patient.

path length. This amounts to a disadvantage of scanned proton treatments because
it makes them much more affected by geometric errors than photon treatments.

A scanned proton beam is represented by a number of spots. A spot is defined
by a lateral position in the fluence plane through which the narrow proton beam
should pass, i.e., a point determining how the scanning magnets should direct the
beam, and an energy level determining the depth of the Bragg peak. The fraction of
the beam MU delivered by a given spot is controlled via the spot weight. Individual
spot weights allow for modulated dose distributions in three dimensions from a
single beam direction.

Pencil beam scanning results in 2–3 times less dose to uninvolved normal tis-
sues as compared to IMRT [40]. Although there is yet little clinical evidence that
proton therapy leads to improved outcomes [66], it has been argued that the high
rates of local tumor control after 15 years that proton treatment has yielded would
be unlikely to achieve with any other treatment technique [39].

For a historical review of proton therapy, see Smith [85], and for a review of
proton therapy treatment planning, see Schwarz [82].

2 Treatment planning

A radiation therapy treatment plan is a specification of the number of beams and
the settings that determine the manner in which the beams are delivered to the pa-
tient. The goal of treatment planning is to find a plan that yields a high probability
of a curative treatment without complications. Since this probability cannot be de-
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termined precisely without further assumptions, a plan with high such probability
is often approximated as one with an appropriate balance between high target dose
and low doses to healthy structures.

Planning based on 2D images, as well as 3DCRT treatment planning, is often
performed by forward planning, which means that the treatment planner specifies
the directions, shapes, and intensities of the beams, calculates and evaluates the
resulting dose, and—if the dose is unsatisfactory—determines desirable parameter
changes. The process is repeated until a satisfactory dose distribution is obtained.

The large number of parameters (e.g., aperture shapes, segment weights, spot
weights) of IMRT and IMPT makes forward planning of all parameters practically
impossible. Instead, computerized automated search methods are required. To this
end, the treatment planner specifies desired qualities of the treatment plan, such as
high target dose and low doses to healthy structures, and an optimization algorithm
determines parameters with the aim to achieve these qualities as well as possible.
This type of treatment planning is called inverse planning.

In this thesis, it is assumed that the treatment plan is identical over the course
of the treatment. This is the standard practice of treatment planning today. In
adaptive radiation therapy, the treatment is modified as new information becomes
available [57, 99]. This has the possibility of increasing the probability of tumor
control and reducing the doses to healthy structures.

2.1 Patient geometry

Images of the patient geometry guide the treatment planning process and help the
treatment planner determine where the tumor and the healthy organs are located
and hence which regions to treat and which to avoid.

Tomographic imaging techniques are used to generate 3D representations of the
patient geometry. These techniques use 2D projections of the patient from multiple
directions to compute cross-sectional images (or “slices”) of the patient. The slices
can be stacked to reconstruct a 3D representation of the patient. The most common
imaging technique in treatment planning is CT, which provides a 3D representation
of the patient tissue densities. The densities not only show where the organs are
located, but are also required for accurate dose calculation. Other tomographic
imaging techniques used in treatment planning are magnetic resonance imaging
and positron emission tomography.

The image data is commonly visualized as 2D slices normal to the anteroposte-
rior, superoinferior, or sinistrodextral axis of the patient. The data is used to specify
the regions of interest (ROIs) of the treatment volume. The ROIs are regions of im-
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portance in the planning process, such as the targets and healthy organs. Those
representing healthy structures are called organs at risk (OARs). The ROIs may
either be delineated manually, one 2D slice at a time, or with the help of segmen-
tation software that, e.g., adapts organ models to the image data.

The delineated region of macroscopic disease, which can be determined from
the patient images, is called the gross tumor volume (GTV). There may also be
a microscopic spread of the cancer cells. To account for this, a margin that en-
compasses the region of suspected microscopic disease is added to the GTV [44].
The GTV plus the margin is called the clinical target volume (CTV). The CTV
is generally further expanded into a planning target volume (PTV), which takes
into account uncertainty of positioning, motion, and anatomical changes during
the treatment [46, 47]. The PTV is defined to ensure a high probability of deliver-
ing sufficient dose to the tumor [94, 95].The different target volumes are described
in more detail in ICRU Report 62 [45].

2.2 Evaluation of plan quality

The quality of a given treatment plan is primarily determined by the quality of
the resulting dose distribution. The dose distribution is evaluated spatially, i.e.,
each 2D slice of the dose distribution is inspected, and on the basis of measures
of the ROI dose distributions, such as the mean dose of the ROI. Many important
physical measures of an ROI dose distribution can be evaluated by inspection of its
(cumulative) dose-volume histogram (DVH). For a given ROI, its DVH shows how
large fraction of the ROI that receives dose at or above each dose level. Examples
of DVHs are shown in Figure 4. Some aspects that can be extracted from the DVHs
and that are used to evaluate plan quality are the following:

• Dose-at-volume: Dv, the highest dose level d such that at least v % of a given
ROI receives the dose d Gy or higher

• Volume-at-dose: Vd, the fraction of the volume of a given ROI that receives
the dose d Gy or higher

• Minimum and maximum dose: D100 and D0

• Near minimum and maximum dose: D98 and D2

• Median dose: D50
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63 Gy or more, and the 50 Gy dose level of the OAR DVH shows that only 1 % of
the OAR receives 50 Gy or more.

From these values, other quality measures can be determined, such as:

• Homogeneity index [47]: (D2 − D98)/D50

• Conformity index [45]: the ratio between the patient volume that receives
95 % of the prescription and the target volume

Biological measures of dose are also used in the evaluation of the treatment
plan quality. For tumors, the probability of achieving tumor control by killing all
clonogenic cells is predicted. This probability is called the tumor control proba-
bility (TCP) and is calculated as the probability that less than one tumor cell sur-
vives after the last treatment fraction, under assumption on some cell dose-response
model [13, 97]. For healthy structures, the probability of different biological end-
points are predicted and included in the evaluation. An example of an endpoint for
a head and neck patient is grade 2 xerostomia (dry mouth of a certain degree). The
probability of complications is called the normal tissue complication probability
(NTCP) [13, 52, 63]. A combination of TCPs and NTCPs can be used to form the
measure P+, which predicts the probability of a complication-free curative treat-
ment [1].
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There are also measures of physical dose with biological basis. The equivalent
uniform dose (EUD) of an ROI is the dose level such that a uniform dose at that
level would have an equivalent biological effect as the ROI dose distribution, under
some biological model or fit to measured data [69, 70]. For a highly serial organ,
which loses its function if one of its subvolumes is damaged, the EUD is mostly
related to the maximum dose to the organ. For a parallel organ, the function of
which is proportional to the fraction of its volume that is undamaged, the EUD is
closer to the mean dose. For a tumor, which may survive unless all its cells are
killed, the EUD relates mostly to the minimum dose.

2.3 Optimization functions

Closely related to the evaluation criteria are the optimization functions. These
functions steer the optimization towards plans that perform well with respect to the
evaluation criteria.

The dose distribution is denoted by d and is a mapping from R3 to R that takes
each point p in the patient volume to the dose dp in R+ deposited at p. Typically,
each optimization function related to a physical dose criterion is associated with an
ROI and penalizes deviations of the ROI dose distribution from some reference. For
a survey of convex functions used in treatment planning, see Romeijn et al. [78].
Commonly used convex optimization functions penalize doses below, above, or
other than some reference dose level. There are also nonconvex dose-based func-
tions in use in treatment planning. A notable example is the DVH function [58],
which penalizes deviations from a dose-volume criterion that specifies how large
subvolume of a given ROI that is allowed to receive a dose above or below the
reference level.

In this thesis, physical optimization functions that penalize dose deviations
quadratically are primarily considered. The treatment plan is thus fitted to the refer-
ence levels in a sense similar to least squares. The functions come in two variants:
one that penalizes doses below the reference and one that penalizes doses above
the reference. These variants have names prefixed by respectively “minimum” and
“maximum.” Many of the functions f can be formulated as

f(d) =

∫ 1

0
ρ (y(v; d)− ŷ(v))2 dv, (1)

where y is the dose-based quantity to be optimized, ŷ is a reference that y should
go above or below, and ρ is a ramp given by ρ(z) = min{z, 0} for the minimum
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variant of the function and ρ(z) = max{z, 0} for the maximum variant, where z is
a real number.

For an ROI consisting of the subset V of the patient volume, let D(v; d) denote
the dose level such that the fraction v in (0, 1] of the ROI receives the dose D(v; d)
or higher, given the dose distribution d. Thus, D(v; d) parameterizes the DVH of
the ROI, and can be defined according to

D(v; d) = max

{
d′ ∈ R+ :

|{p ∈ V : dp ≥ d′}|
|V| ≥ v

}
,

where |A| denotes the volume of the setA. LetDref(v) = D(v; dref) be a reference
dose-volume function based on some fixed reference dose distribution dref.

Now, minimum reference DVH and maximum reference DVH optimization func-
tions are obtained when y and ŷ in (1) are defined according to

y(v; d) = D(v; d) and ŷ(v) = Dref(v).

Reference DVH functions can be used to replicate dose distributions of reference
plans or to ensure that the dose distribution of a given plan does not deteriorate.
The latter is the topic of Paper F. Minimum DVH and maximum DVH functions are
obtained when in the corresponding reference DVH functions the reference DVH
curve Dref, which defines ŷ, is given by respectively

Dref(v) =

{
d̂ if v ≤ v̂
0 otherwise

and Dref(v) =

{
d̂ if v ≥ v̂
∞ otherwise

,

where d̂ is a reference dose level and v̂ is a reference volume parameter. A mini-
mum DVH function thus aims to yield a DVH curve that exceeds d̂ at the volume v̂
and a maximum DVH function aims to yield one that falls below d̂ at v̂. Minimum
dose and maximum dose functions are obtained when the reference DVH curve
Dref, and thus also ŷ, is given by

Dref(v) = d̂

for all values of v. A uniform dose function is the sum of a minimum and a max-
imum dose function with the same reference dose level d̂. The minimum, maxi-
mum, and uniform dose functions are convex in dose, whereas the DVH functions
and reference DVH functions are not.
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Functions including the EUDs allow biological dose-response to be taken into
account in physical planning. The formula for EUD suggested by Niemierko [70]
is based on the generalized mean and is given by

EUDa(d) =

(∫
V
dap dp

)1/a

, (2)

where a 6= 0. The parameter a depends on the seriality of the considered ROI.
For a serial organ, large values of a are used, whereas for a parallel organ, small
positive values of a are used. For target structures, negative values of a are used.
Minimum EUD and maximum EUD functions are achieved when y and ŷ in (1) are
given by

y(v; d) = EUDa(d) and ŷ(v) = d̂,

independent of the value of v, where d̂ is the reference EUD level. The EUD (2)
is concave in dose when 0 6= a ≤ 1 and convex when a ≥ 1 [23]. Thus, the
minimum EUD function is convex when 0 6= a ≤ 1 and the maximum EUD
function is convex when a ≥ 1.

The functions defined above are all independent from the spatial dose distribu-
tion. Two functions that depend on the exact location of the dose are the reference
minimum dose and reference maximum dose functions, which are defined accord-
ing to

f(d) =

∫
V
ρ
(
dp − dref

p

)2
dp,

where dref is a fixed reference dose distribution and ρ is as above. These are convex
functions of dose. When dref

p is set to a constant reference level d̂ for all p in the
considered ROI volume, minimum and maximum dose functions are obtained.

2.4 Optimization problem

Among the parameters that are available to control the treatment plan are, for
IMRT, the jaw and MLC leaf positions and the segment weights and, for IMPT,
the spot positions and spot weights. For both modalities, the number of beams and
the couch and gantry angles can additionally be controlled. Some of these parame-
ters are determined before the optimization or by forward planning, whereas others
correspond to the optimization variables that are determined by inverse planning.
The optimization variables are denoted by x and the set of feasible optimization
variables is denoted by X . Here, the variables determined by the optimization are
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assumed to be the MLC leaf positions and segment weights for IMRT and the spot
weights for IMPT.

The desired qualities of the treatment plan are specified in the form of an ob-
jective function and, possibly, constraint functions. The objective function f pe-
nalizes deviation from the desirable qualities, and is thus to be minimized. In this
thesis, the objective function f is typically a composite function, consisting of
constituents f1, . . . , fn that reflect different desired qualities of the treatment plan.
In most cases, these functions penalize conflicting qualities, such as the deviation
from a high target dose and the deviations from low doses to critical organs, and
do therefore not have a common minimizer. Hence, a tradeoff between the con-
stituents is necessary. Such a tradeoff is commonly specified by the introduction of
nonnegative importance weights w1, . . . , wn and the definition

f =
n∑
i=1

wifi.

The constraints can be partitioned into physical constraints and planning con-
straints. Physical constraints are those that are imposed by hardware limitations
and the laws of nature, e.g., MLC leaf position limitations and nonnegativity of
the fluence. The physical constraints used in this thesis are all linear and are rep-
resented by the set X of feasible variables, which thus takes the form of the set
{x : Ax ≤ b} for some matrix A and vector b. Planning constraints are specified
by the treatment planner and reflect the requirements on the treatment plan that
must not be compromised. These are defined as optimization functions c1, . . . , cm
and are assumed to be satisfied whenever these functions evaluate to zero or less.
Examples of objective function constituents and planning constraint functions are
the functions defined in Section 2.3. With the dose distribution d as a function of
the optimization variables x, the inverse planning problem can now be formulated
as

minimize
x

f(d(x)) (objective function)

subject to ci(d(x)) ≤ 0, i = 1, . . . ,m, (planning constraints)
x ∈ X . (physical constraints)

(3)

Numerical optimization is enabled by discretization of the patient geometry
into cuboid voxels. Photon beams are discretized into rectangular bixels, whereas
actively scanned proton beams are represented by discrete spots. An incidence
matrix P , with one column for each bixel or spot and one row for each voxel, maps
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fluence to dose. For photon beams, the dose distribution d(x) is computed via the
fluence:

d(x) = Pϕ(x),

where ϕ(x) is the fluence resulting from the optimization variables x. For pencil
beam scanning, the optimization variables x are the spot weights, and the dose
distribution is linear in these:

d(x) = Px.

For IMRT, the mapping from machine parameters to fluence is nonconvex, which
makes the IMRT optimization problem nonconvex also when the optimization
functions f and c1, . . . , cm are convex functions of dose. For IMPT, the linear
mapping from spot weights to dose make the IMPT optimization problem convex
whenever the optimization functions are convex functions of dose.

2.5 Optimization method

In all of the appended papers, sequential quadratic programming (SQP) is used to
solve optimization problems that arise in radiation therapy. An SQP method solves
general nonlinear optimization problems, such as the treatment planning prob-
lem (3), as a sequence of subproblems. Each subproblem minimizes a quadratic
model of the objective and the active constraints, subject to a linearization of the
constraints. For a clean exposition, consider the mapping from optimization vari-
ables to dose implicit in the optimization functions, i.e., let f(x) = f(d(x)) and
ci(x) = ci(d(x)) for i = 1, . . . ,m. Starting from point xk in iteration k, the search
direction denoted by pk is determined as the solution to the quadratic programming
problem

minimize
p

1
2p
T∇2

xxL(xk, λk)p+∇f(xk)
T p

subject to ci(xk) +∇ci(xk)T p ≤ 0, i = 1, . . . ,m,
xk + p ∈ X ,

(4)

where L is the Lagrangian function given by L(x, λ) = f(x) + λT c(x), in which
c is the vector of the constraint functions c1, . . . , cm, and λk is the Lagrange multi-
plier vector (the dual variables), which is required to be nonnegative. The dual
search direction dk is the difference between the optimal Lagrange multipliers
to (4) and the previous estimate λk. Note that xk and λk in (4) are constant and
that the constraint xk + p ∈ X is equivalent to A(xk + p) ≤ b for some matrix
A and vector b. For many optimization problems, including those considered in
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this thesis, it would be computationally expensive to compute the Hessian of the
Lagrangian, ∇2

xxL, exactly. Therefore, ∇2
xxL is approximated by quasi-Newton

approximations that are updated with Broyden-Fletcher-Goldfarb-Shanno updates
in each iteration [71]. This makes it possible to represent the approximate Hessian
of the Lagrangian as a sum of a small number of vector outer products. If necessary,
the approximation of the Hessian of the Lagrangian is modified to maintain posi-
tive definiteness throughout the optimization, which ensures that the problem (4) is
convex and can be solved to optimality [38]. Once the search directions pk and dk
have been found, the SQP algorithm proceeds by determining the step length αk
by approximately solving the one-dimensional problem

minimize
α>0

M(xk + αpk, λk + αdk),

where M(x, λ) is a merit function that measures the quality of a given primal-
dual pair (x, λ) with respect to the objective f and the constraints c1, . . . , cm
and X . Given the search directions and the step length, the new primal-dual pair
(xk+1, λk+1) is defined by (xk+1, λk+1) = (xk, λk) + αk(pk, dk).

More details concerning the SQP algorithm used in Papers A, B, and D can be
found in Gill et al. [38]. In Papers C, E, and F, an SQP algorithm developed by
RaySearch Laboratories (Stockholm, Sweden) is used.

3 Uncertainties in radiation therapy

Several sources of uncertainty may affect a radiation therapy treatment. Unless un-
certainties are accounted for in the planning process, they may lead to severe degra-
dation of the quality of the delivered treatment as compared to the planned. Major
sources of uncertainty include uncertainty in the position of the target relative to
the beams, uncertainty regarding the location of the cancer cells, and uncertainty
in the patient density data.

The errors in radiation therapy are typically partitioned into systematic (treat-
ment preparation) errors and random (treatment execution) errors. Among the sys-
tematic errors are imaging inaccuracies [75, 89], image artifacts [6, 48], errors in
the conversion from CT densities to stopping power [80, 81], dose calculation er-
rors [50, 72], target misalignment during image acquisition [62, 94], and errors in
the delineation of the ROIs [31, 36]. Among the random errors are daily setup
errors [5, 43], organ motion [17, 53], and organ deformation [98]. A review of mo-
tion effects in IMRT is given by Webb [96]. Radiation therapy errors and margin
recipes to account for these errors have been reviewed by van Herk [94]. Lomax
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has reviewed the effects of calculation errors [59] and of motion [60] on IMPT
treatments.

In Papers A–D, patient misalignments and density errors are considered and
accounted for by robust optimization methods. Uncertainty regarding the align-
ment of the patient relative to the beams is called setup uncertainty. Uncertainty
with respect to the densities and the conversion from densities to proton stopping
power leads to range uncertainty of proton beams: the risk that the beams over- or
undershoot. Range errors can result in that a Bragg peak planned to be located in
front of an OAR is delivered to the OAR.

Uncertainty can be interpreted as a wider concept. In Paper E, the uncertainty
accounted for during the optimization is with respect to the treatment planner’s
preferences regarding the treatment goals. This means that the importance weights
of the optimization functions, as introduced in Section 2.4, are subject to uncer-
tainty during the optimization.

3.1 Optimization under uncertainty

Optimization problems are typically considered with precisely specified parame-
ters. The solutions to such problems may be highly sensitive to errors in the pa-
rameter values: if the true values differ from those used during the optimization,
the solution may in fact be far from optimal. There are numerous methods that can
be used to reach solutions that are robust against uncertainties.

Depending on the nature of the uncertainties, different approaches for taking
them into account are preferable. For repeated processes where the sum of the re-
sults of the repetitions is an important quantity, it is desirable that the expectation
be as good as possible, since by the law of large numbers, the average of the results
of a repeated experiment tends towards the expected value. For such processes,
the expected value of the objective function is often optimized. This requires an
estimate of the probability distribution of the uncertainty. Optimization of the ex-
pectation of a function is called stochastic programming. Sometimes it is possible
to compensate for the effects of the realized uncertainty at some cost, in which case
stochastic programming with recourse can be used. For more details on stochastic
programming, see, e.g., Shapiro et al. [83].

For a process that is not repeated, a good expected objective value may be in-
sufficient to ensure a high probability of a satisfactory outcome. For such cases, it
may be beneficial to hedge against uncertainty in a more conservative manner. To
this end, one may optimize risk measures such as the value at risk (VaR), which
is the best possible outcome conditioned on that one of the α worst possible out-
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comes will occur, where 0 < α ≤ 1. This measure is however in general neither
subadditive nor convex and is often difficult to optimize. A related measure is the
conditional value at risk (CVaR) [4], which measures the expected value of the out-
come conditioned on that one of the α worst possible outcomes will occur, where
0 < α ≤ 1. The CVaR is convex, has better numerical properties than the VaR,
and can be readily optimized [76].

When the probability distributions of the uncertain parameters are unknown,
robust optimization may provide a suitable means of accounting for uncertainty. In
robust optimization, only bounds on the uncertain parameter values are assumed.
The optimization then hedges against the worst case outcome of the uncertainty
for parameters within the bounds and requires the solution to remain feasible for
all realizations of uncertainty within the specified set. For many special classes of
robust programs, such as robust linear programs, equivalent deterministic programs
can be derived, which can be solved by standard optimization methods [8,9,35,87].

Stochastic programming, CVaR optimization, and robust optimization are spe-
cial cases of minimax stochastic programming [32, 84], in which the probability
distribution of the errors is modeled as known only within some bounds, and an op-
timal solution is sought after for the expectation of the objective function under the
worst case probability distribution. This leads to distributionally robust solutions.
If the bounds on the probability distribution are tight, the minimax stochastic pro-
gramming becomes equivalent to stochastic programming. If point distributions,
which assign the probability 1 to single realizations of the uncertainty, are included
in the set of possible probability distributions, the resulting solution can be made
robust in the same sense as by robust optimization.

3.2 Treatment plan optimization under uncertainty

Many optimization approaches that account for uncertainty require some discretiza-
tion of the possible realizations of the uncertainty in order to yield computational
optimization problems. This is often the case in radiation therapy, because errors
many times result in nonlinear changes of dose for which there are no known ana-
lytical expressions. The realizations are therefore discretized into scenarios, where
each scenario corresponds to a specific realization of the uncertainty. The scenarios
are enumerated by the set S . The dose deposited to the point p in the patient vol-
ume under scenario s, given the optimization variables x, is denoted by dp(x; s).
The nominal scenario corresponds to no error.
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3.2.1 Robust IMRT

For cases of relatively homogeneous density treated with photon-mediated IMRT,
the static dose cloud approximation [90] is often viable. Under this approximation,
the patient is assumed to be moving within a static dose distribution. The effect of
a patient setup error thus corresponds to a rigid translation of the dose distribution.
This enables easy computation of scenario doses and of moments of the doses to
specific points in the patient geometry, such as the expected doses or the expected
squared doses, which together yield the dose variances. The expected doses and
the dose variances can be used to compute measures such as the expectation of the
uniform dose optimization functions defined in Section 2.3.

In the IMRT literature, stochastic programming is often used to account for
uncertainties in IMRT. Löf et al. [56] accounted for systematic and random errors
by optimizing the expectation of the biological objective function P+ measuring
the probability of complication-free tumor control. Unkelbach and Oelfke [92, 93]
also used stochastic programming accounting for systematic and random errors,
but applied to uniform dose optimization functions. The stochastic programming
problem is formulated

minimize
x∈X

Eπ [f(d(x;S))] , (5)

where π is the assumed probability distribution of the uncertainties and S is the
random variable picking the scenario s from the set S with probability πs. Cromvik
and Patriksson [29] accounted for systematic errors by CVaR optimization applied
to physical optimization functions. The CVaR optimization problem is formulated

minimize
λ, x

λ+ 1
αEπ [max{f(d(x;S))− λ, 0}]

subject to x ∈ X ,
(6)

in which 0 < α ≤ 1.
Other authors have used methods from robust optimization to account for un-

certainties in IMRT. Chu et al. [24] and Ólafsson and Wright [73] considered the
dose to each voxel as a random variable. Using robust linear programming meth-
ods from El-Ghaoui and Lebret [35] and Ben-tal and Nemirovski [8], they opti-
mized IMRT plans to ensure a high probability of delivering an adequate dose to
each voxel considered independently. Chan et al. [21] optimized IMRT plans ac-
counting for organ motion following an uncertain probability distribution. They
showed how a robust linear programming formalism similar to that of Bertsimas
and Sim [9] can be used to create treatment plans that deliver a sufficient expected
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dose to the tumor under any of the organ motion probability distributions from a
given set.

Under the static dose cloud assumption, the effect of robust optimization is
similar to margins. Optimization with respect to an uncertain probability distri-
bution [21] and the use of CVaR [29] thus provide continuous scaling between
stochastic programming and margin-like planning. These methods for robustness
are thus intended to handle uncertainties in a less conservative manner than mar-
gins. The benefit of doing so is that the risk of complications may be reduced.

Rather than optimizing the penalty functions of dose directly, Sobotta et al. [86]
maximized the probability that the functions evaluated to values within specified
intervals for treatments subject to setup uncertainty. They could thereby maximize
the probability of achieving a satisfactory treatment. Maximization of the proba-
bility of satisfying the planning criteria is the topic of Paper C.

3.2.2 Robust IMPT

The current standard of accounting for uncertainty in proton therapy is to use mar-
gins [46]. However, the static dose cloud approximation is not suitable for IMPT:
The Bragg peak positions are highly dependent on the stopping powers, and hence
the densities, of the traversed tissues. Combined with modulated beam doses with
sharp dose gradients, this makes errors lead to deformations of the proton dose
distributions. Figure 5 illustrates how the dose distribution of a spot delivered to a
lung tumor is distorted as the result of a setup error. Margins may therefore have

(a) Nominal setup (b) Shifted setup

Figure 5. (a) Planned dose distribution of a spot delivered to a lung tumor. (b) Dose
distribution of the same spot after a setup shift.
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only little of the intended effect for IMPT plans, especially for highly modulated
treatments and heterogeneous tissues such as the lung. This has also been found to
be the case in empirical studies [3, 22, 37, 55].

Although optimization of the expectation of physical functions of dose has
been used to account for systematic range and setup uncertainties in IMPT [90,91],
the lack of protection provided by margins may be the reason behind the higher de-
gree of conservativeness that has often been employed to account for uncertainties
in IMPT than in IMRT. In the first approaches to robust IMPT, the dose to each
voxel was considered independent from the doses to other voxels: Unkelbach et
al. [91] and Chan [20] accounted for systematic range errors in IMPT by optimiz-
ing the worst case dose to each voxel considered independently. Pflugfelder et
al. [74] used a similar measure to account for systematic range and setup errors
in IMPT. They optimized the sum of the objective function applied to the nominal
scenario dose distribution and to the worst case dose distribution. The worst case
dose distribution was introduced by Lomax et al. [61] and is defined as either dmin

or dmax, according to

dmin
p (x) = min

s∈S
dp(x; s) or dmax

p (x) = max
s∈S

dp(x; s) (7)

for each point p in the patient volume, depending on whether the structure con-
sidered is a target, for which lower doses are often worse, or an OAR, for which
higher doses are worse. Note that the minimum or maximum is taken for each
point p considered independently. Liu et al. [55] also used the worst case dose
distribution, but accounted for dmax, in addition to dmin, for the targets in order to
avoid overdosage. An optimization problem using worst case dose distributions
can be formulated as

minimize
x∈X

∑
i∈T

wifi(d
min(x)) +

∑
i∈O

wifi(d
max(x)), (8)

possibly with the addition of terms fi(dmax(x)) for i in T , where the optimiza-
tion functions i = 1, . . . , n are partitioned into those applied to target structures,
indexed by T , and those applied to OARs, indexed by O.

Chan [20] discussed the possibility of minimizing the objective function in
the worst case scenario—with correlation between the voxels preserved—as an al-
ternative to optimizing the worst case dose distribution. Formulated as a linear
program, this yields too large problems to be computationally tractable. In Papers
A and B, nonlinear programs optimizing the worst case scenario objective function
value with respect to systematic range and setup errors are considered, which yield
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computationally tractable problems. In such formulations, the constituent opti-
mization functions for all ROIs are always considered in the same scenario, so that
only physically realizable scenarios are taken into account. This can be formulated
as the worst case scenario (or “minimax”) optimization problem

minimize
x∈X

max
s∈S

n∑
i=1

wifi(d(x; s)). (9)

Motivated by an application to multicriteria optimization, Chen et al. [22] used
an approach that is intermediate to the approach considering the worst case dose
distribution and that considering the worst case scenario. They optimized the worst
case scenario for each optimization function considered independently, which can
be formulated as the optimization problem

minimize
x∈X

n∑
i=1

wi max
s∈S

fi(d(x; s)). (10)

The formulations (8)–(10) show that the main difference between the approaches
for robust IMPT is the level at which the maximum (or minimum) operator is ap-
plied. The deeper the level of the operator, the more conservative the method
becomes. A more conservative method accounts for a larger number of scenarios.
Not all of these scenarios are physically realizable: there is no physical scenario in
which each point, considered independently, receives its worst case dose. Casiraghi
et al. [19] studied the DVHs defined by the worst case dose distributions and those
defined by the worst case scenario, taken as the upper and lower envelopes of the
scenario DVHs, which maintains correlation between the voxels. They concluded
that the worst case scenario provides accurate predictions of the DVHs, whereas
the worst case dose distribution provides overly conservative DVH predictions.

4 Multicriteria optimization of radiation therapy

An unavoidable tradeoff in radiation therapy treatment planning is that between tar-
get coverage and sparing of healthy tissues. In conventional planning, this tradeoff
is resolved by the introduction of importance weights for the optimization func-
tions reflecting the different criteria, as in the optimization problem (3). However,
the effect of the weighting is not fully known before the optimization problem is
solved. A manual process of parameter tuning and reoptimization is thus often
required before an acceptable plan is found. Multicriteria optimization (MCO)
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methods have been introduced to aid in the decision making process. The goal
of MCO methods is to avoid the manual tuning loop. Many aspects of general
multicriteria optimization are detailed in Miettinen [65].

4.1 Multicriteria optimization

The problem of determining a tradeoff between n conflicting objectives f1, . . . , fn,
with n ≥ 2, can be formulated as a multicriteria optimization problem:

minimize
x

f(d(x)) =
[
f1(d(x)) · · · fn(d(x))

]T
subject to ci(d(x)) ≤ 0, i = 1, . . . ,m,

x ∈ X ,
(11)

where the constraints are as in problem (3). The set of optimal solutions to this
vector-valued problem is usually considered to be the set of Pareto optimal points.
A feasible solution x∗ is Pareto optimal if there exists no feasible x such that

f(d(x)) ≤ f(d(x∗)) and f(d(x)) is distinct from f(d(x∗)), (12)

where the inequality is componentwise. The set of Pareto optimal solutions typi-
cally consists of infinitely many points and cannot be easily determined. Instead,
it may be approximated by a finite set of points, each obtained by minimization of
a scalar-valued substitute for the vector-valued objective of problem (11). Scalar-
valued substitutes can be achieved by a number of scalarization methods. In this
thesis, the common technique is used in which a weighted sum of the optimiza-
tion functions is minimized, which amounts to solving problem (3) for different
importance weights w1, . . . , wn. A collection of plans corresponding to optimal
solutions to a number of instances of problem (3) with different weights then forms
a database of plans that is used to approximate the Pareto set.

The database that approximates the Pareto set may be used in an interactive
planning process, in which convex combinations in dose are formed between the
database plans. Such convex combination can be formed in real-time, and allow
the treatment planner to continuously explore the tradeoffs of the considered pa-
tient case. There exist different navigation methods for exploration of the convex
combinations of plans [27, 67].

4.2 Robust multicriteria optimization

As in the standard singlecriterion treatment planning problem (3), the parameters of
a multicriteria problem like (11) are affected by uncertainty. It is therefore equally
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important to account for uncertainty in multicriteria optimization as in singlecrite-
rion optimization. However, not all methods used to account for uncertainty in the
singlecriterion case can be directly transferred to a multicriteria setting.

A method that can be transferred to the multicriteria case is stochastic program-
ming on the form (5). It results in the vector-valued objective

Eπ
[[
f1(d(x;S)) · · · fn(d(x;S))

]T]
,

which is equivalent to[
Eπ[f1(d(x;S))] · · · Eπ[fn(d(x;S))]

]T
(13)

because the expectation operation is linear. Deb and Gupta [30] considered un-
certain multicriteria optimization in which the expected values of the objective
functions were taken as averages over a neighborhood of the current optimization
variable values. They also optimized the nominal objective function under con-
straints on the variability of the functions over the uncertainty set.

Other robust multicriteria methods that account for uncertainty in an objective-
wise manner have also been considered. An example is the objective-wise worst
case method (10) used by Chen et al. [22], which accounts for the worst case sce-
nario for each objective considered independently. It results in a vector-valued
objective on the form[

max
s∈S

f1(d(x; s)) · · · max
s∈S

fn(d(x; s))
]T
. (14)

This form of robustness was considered theoretically by Kuroiwa and Lee [51],
who provided scalarization methods and robust optimality conditions.

Since the objectives (13) and (14) are vector-valued, the standard definition (12)
of Pareto optimality can be used to define their solution sets. Worst case optimiza-
tion on the form (9) applied in a multicriteria setting results in the objective

max
s∈S

[
f1(d(x; s)) · · · fn(d(x; s))

]T
. (15)

The effect of the maximum operation is not well-defined unless the objective vector
is scalarized. It moreover depends on the type of scalarization. Therefore, the
objective vectors must generally be considered for all scenarios in S , which results
in a set of vectors. The objective (15) is thus set-valued, so Pareto optimality
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according to (12) does not apply. This form of robust multicriteria optimization was
proposed by Ehrgott et al. [34]. They extended the definition of Pareto optimality
to set-valued objectives such as (15): a feasible solution x∗ is robust Pareto optimal
if there is no feasible x such that

{f(d(x; s)) : s ∈ S} ⊆ {f(d(x∗; s))− r : s ∈ S, r ∈ Rn+, r 6= 0},

in which f is the vector of the optimization functions f1, . . . , fn. Ehrgott et al. [34]
showed that neither weighted sum scalarization nor the ε-constraint method [33]
can generate all optimal solutions to minimax robust multicriteria programs in the
general case. They also considered objective-wise worst case optimization on the
form (14), and showed that this method can generate solutions that are optimal to
minimax robust multicriteria programs. Extensions of their results are provided in
Paper D.

4.3 Deliverability of navigated plans

For IMPT, convex combinations of plans correspond to convex combinations of
nonnegative spot weights. Because such combinations remain nonnegative, con-
vex combinations of IMPT plans remain deliverable (although a cutoff for low-
weighted spots may be required). For IMRT, convex combinations of deliverable
step-and-shoot plans are not directly deliverable within the number of segments of
the database plans: the number of segments of the convex combination is the sum
of those of the database plans with positive coefficients. Therefore, a conversion
step may be beneficial, which creates a new plan replicating the navigated convex
combination of dose with a restricted number of segments. The replication may be
performed by optimization of the new plan with respect to reference DVH func-
tions, as defined in 2.3, with the reference dose-volume function Dref defined by
the navigated dose distribution [11, 26].

The replication that is performed after the navigation results in a deliverable
plan, but has the disadvantage that the resulting plan may be clinically unacceptable
or correspond to a tradeoff other than the navigated one. It may therefore lead to a
manual loop of parameter tuning, thereby defeating the purpose of MCO. To avoid
this problem, deliverable navigation for step-and-shoot IMRT has been devised.
Craft and Richter [28] proposed using a database of deliverable step-and-shoot
plans and restrict the number of positive coefficients in the convex combinations
of plans. The resulting convex combinations are thus deliverable with the number
of segments increased to the sum of those of a small number of plans. Salari and
Unkelbach [79] used column generation [77] to generate a single set of apertures
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well-suited for all plans in the database representing the Pareto set. Navigation of
such a representation corresponds to modification of the segment weights and thus
results in deliverable plans without increasing the number of segments. In Paper
E, these two methods for deliverable navigation are generalized by a method that
allows for some shared and some individual apertures for the database plans.

5 Summary and main contributions

5.1 Summary of the appended papers

The appended papers are organized thematically: Papers A–D concern radiation
therapy treatment plan optimization methods accounting for geometric uncertainty.
In Paper D, the geometric uncertainty is considered in a multicriteria setting. The
topic of MCO is continued in Paper E, where suboptimal deliverable databases of
plans are improved upon. Finally, the method introduced in Paper F improves upon
treatment plans that have been obtained with too weak planning criteria.

Paper A: Minimax optimization for handling range and setup uncer-
tainties in proton therapy

Paper A is co-authored with Anders Forsgren and Björn Hårdemark, and has been
published in Medical Physics, Vol. 38, No. 3, pp. 1672–1684, 2011.

In this paper, IMPT subject to systematic range and setup uncertainties is con-
sidered. Minimax optimization is proposed as an alternative to margins to account
for the uncertainties. In the minimax method, the possible errors (of the magnitude
that margins are intended to protect against) are discretized into scenarios. The op-
timization then aims to minimize the optimization function penalties in the worst
case scenario.

The minimax method is evaluated on three patient cases that represent differ-
ent treatment planning conditions: a lung case, in which the treatment region is of
heterogeneous density; a paraspinal case, in which the tumor surrounds the spinal
cord and contains titanium bolts; and a prostate case, which is of homogeneous
density. The resulting plans are compared to benchmark plans obtained by plan-
ning with conventional margins; margins and uniform beam doses (single field,
uniform dose); and margins, uniform beam doses, and the densities in the low-
density regions overridden during optimization (material override). For all cases,
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the minimax method resulted in more robust target coverage and lower doses to the
OARs than the conventional methods.

Paper B: A characterization of robust radiation therapy treatment plan-
ning methods—from expected value to worst case optimization

Paper B has been published in Medical Physics, Vol. 39, No. 8, pp. 5169–5181,
2012.

In this paper, random errors of uncertain probability distributions are considered
in addition to the systematic errors accounted for in Paper A. To allow for different
amounts of conservativeness in the optimization, a minimax stochastic framework
is formulated that generalizes many of the previous methods used in the literature
and allows for scaling between stochastic programming and minimax optimiza-
tion. Methods from this framework are characterized empirically by application to
a phantom case subject to a variety of uncertainties.

Three special cases of methods from this framework are considered: (i) ex-
pected value, (ii) CVaR, and (iii) worst case optimization. These methods are ap-
plied to a phantom case with a C-shaped target partly surrounding an OAR. The
case is considered when subject to systematic errors, random errors, or simulta-
neous systematic and random errors. The random errors are assumed to follow
known as well as uncertain probability distributions. Systematic errors and the un-
certain probability distributions are handled by means of methods (i)–(iii), whereas
the random errors are handled by expected value optimization. Tradeoff curves
with respect to target coverage and OAR sparing for methods (i)–(iii) show that all
methods perform similarly in the best case scenario and in the mean case, but that
the tradeoff in the worst case scenario improves with the conservativeness of the
method. It is moreover shown that optimization with respect to random errors of
known probability distribution can lead to highly heterogeneous dose distributions.

Paper C: Maximizing the probability of satisfying the planning criteria
in radiation therapy under setup uncertainty

Paper C is co-authored with Anders Forsgren and Björn Hårdemark., and has been
submitted to Physics in Medicine and Biology.

In worst case optimization, there is a risk that the planning criteria cannot be ful-
filled in all scenarios. This paper introduces a method that determines how large
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setup errors that can be accounted for while all planning criteria are satisfied. To
this end, the magnitudes of the setup errors that are accounted for are included
as variables in the optimization together with the standard variables for IMPT or
photon-mediated IMRT. These magnitudes are then maximized (within specified
bounds) subject to constraints that enforce the planning criteria under the consid-
ered errors. This results in a maximization of the probability of satisfying the
planning criteria.

The method is applied to two patient cases subject to IMRT or IMPT treatment
and compared to worst case optimization accounting for a priori determined setup
errors. For both cases and modalities, the proposed method reduced the size of
the region within which the optimization aimed to satisfy the planning criteria, and
thereby generated plans that satisfied a larger number of planning criteria under the
retracted setup shifts than the method accounting for a priori errors. The proposed
method moreover satisfied a larger number of the planning criteria under the a
priori setup errors. It thereby enabled better plans than robust planning with respect
to a priori determined setup errors.

Paper D: Controlling robustness and conservativeness in multicriteria
intensity-modulated proton therapy optimization under uncertainty

Paper D is co-authored with Rasmus Bokrantz, and has been printed as Techni-
cal Report TRITA-MAT-2013-OS5, Department of Mathematics, Royal Institute
of Technology, 2013.

In this paper, MCO for IMPT in the presence of systematic setup uncertainty is
considered. The uncertainty is accounted for by application of worst case opti-
mization. Mathematical theory for robust Pareto optimality is introduced and a
subset of the robust Pareto optimal solutions that are optimal under risk-averse
preferences is defined and characterized.

The worst case optimization is contrasted to objective-wise worst case opti-
mization. For a one-dimensional phantom geometry, it is shown that the worst case
method better exploits spatial structure and provides the treatment planner with
more control over the tradeoffs than does the objective-wise worst case method.
The parameter changes in the minimax stochastic formulation of Paper B for sys-
tematic errors that allow for control over robustness and conservativeness are de-
tailed. Here, robustness is defined as the magnitude of the uncertainties that are
accounted for and conservativeness is defined as the amount of variability in the
estimated probability distributions that is protected against. It is shown that by
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reduction of the robustness, dose escalation can be made feasible while a sharp
lateral dose fall-off is maintained. A decrease in conservativeness is shown to pro-
duce a gentle dose fall-off that contributes little to tumor control. The sharp lateral
fall-off is shown to be motivated because it minimizes the integral dose under the
constraint that the expected TCP must be at least 95 %.

Paper E: Deliverable navigation for multicriteria intensity-modulated
radiation therapy planning by combining shared and individual aper-
tures

Paper E is co-authored with Rasmus Bokrantz, and has been submitted to Physics
in Medicine and Biology.

The problem of deliverable Pareto surface navigation for step-and-shoot IMRT is
considered. This problem amounts to generating a representation of the Pareto set
such that convex combinations of plans from the representation remain directly
deliverable. In this paper, the Pareto set is represented by plans that have some
apertures from a collective pool and some apertures that are individual to the plans.
All segment weights are individual. Since some apertures are shared, the number of
segments required to deliver convex combinations of plans is reduced compared to
when all apertures are individual: combinations of k plans with nsh shared and nind
individual apertures result in plans deliverable within nsh + knind apertures. The
shared apertures constitute a coupling between the plans representing the Pareto
set. Changes to one such plan may thus affect the other plans. All plans represent-
ing the Pareto set are therefore optimized simultaneously by direct step-and-shoot
optimization with constraints that enforce some of the apertures to be identical
across the plans. This method generalizes previous methods for deliverable nav-
igation to allow for some shared and some individual apertures. The introduced
method can also be used as a post-processing step to previous methods for deliv-
erable navigation in order to improve upon their plans. Application of the method
to subsets of plans of the Pareto set representation enables deliverable Pareto sur-
face navigation between plans of similar quality as those of the unrestricted (non-
navigable) Pareto set of plans for which all apertures are individual. The method is
applied to a paraspinal case with two or three objectives. The results show that the
use of a few individual apertures leads to much increased plan quality compared to
plans with all apertures shared.
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Paper F: Automated improvement of radiation therapy treatment plans
by optimization under reference dose constraints

Paper F has been published in Physics in Medicine and Biology, Vol. 57, No. 23,
pp. 7799–7811, 2012.

This paper deals with the fact that the level of experience of the treatment plan-
ner has large impact on the quality of treatment plans [7, 10, 25], which indicates
that many plans are suboptimal. It may thus be possible to improve upon some
criterion of a given treatment plan while all other criteria are maintained. In this
paper, a method is introduced that, starting from a given plan, improves thereupon
by minimizing the doses to the OARs while the doses of all structures are con-
strained to be at least as good as in the given plan. The constraints that enforce
this are based on reference DVH functions and reference dose functions, as de-
fined in Section 2.3. The minimum and maximum operations in these constraints
can lead to convergence difficulties when gradient-based optimization methods are
warm-started from points where the operations evaluate to zero. The difficulties are
counteracted by the introduction of log-sum-exp regularization of these operations.

5.2 Main contributions

The main contributions of the appended papers are within three fields:

Robustness of treatment plans

Paper A introduces minimax optimization into the field of IMPT as a substitute for
margins. It is the first method shown to lead to improved target coverage robustness
and reduced OAR doses as compared to conventional heuristics for robustness.

Paper B provides a generalized framework that shows how many previous
methods for robust treatment plan optimization are related. It extends the method
of Paper A to account for random errors of uncertain probability distribution in ad-
dition to the systematic errors. The application of this framework to a phantom case
subject to IMPT treatment provides the first indication that the more conservative
methods to account for uncertainty may yield more attractive tradeoffs.

Paper C introduces a new method for maximizing the probability of satisfy-
ing the planning criteria when the treatment is subject to setup uncertainty. This
method requires fewer scenarios than previous methods with the same goal [86].
The results show that by asking for a little less, the treatment planner can some-
times reach better plans.
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Paper D provides the first MCO method for robust IMPT that uses worst case
optimization. The results show that worst case optimization on the form of (9) pro-
vides the treatment planner with more control over the resulting plan than objective-
wise worst case optimization similar to (10). Moreover, the empirical results of
Paper B that favors worst case optimization instead of expected value optimization
are supported by biological arguments.

Improvement of treatment plans

Paper E generalizes deliverable Pareto surface navigation to the case where some
apertures are shared between plans and some are individual. It provides empirical
evidence that such partial sharing can be beneficial with respect to the tradeoff
between plan quality and delivery time. This paper moreover provides the first
method for deliverable Pareto surface navigation that can converge to the ideal
(non-navigable) Pareto surface of plans for which all apertures are individual.

Paper F provides a solution to the problem of suboptimal plans that result when
the treatment planner uses too weak requirements in the optimization. The con-
straints based on reference DVH and dose introduced in the paper can provide
more stringent assurance than conventionally that the dose distribution does not
deteriorate for lexicographic ordering methods for IMRT [16, 49].

Theoretical contributions

Paper D extends the theory for robust MCO. Specifically, the concept of convex
hull efficiency is defined. The set of convex hull efficient solutions is shown to be a
proper subset of the robust efficient solutions. It is shown that a necessary condition
for convex hull efficiency is optimality with respect to a strictly increasing convex
scalarizing function, and that a sufficient condition is optimality with respect to a
strongly increasing convex scalarizing function.

5.3 Contributions by co-authors

For Papers A and C, Anders Forsgren and Björn Hårdemark acted as advisors, sug-
gesting directions of the research and supervising the work. Papers D and E were
written jointly with Rasmus Bokrantz. The design of the computational experi-
ments and the theoretical work of these papers were performed in close collabo-
ration. The respective first author—Rasmus Bokrantz for Paper D and I for Paper
E—was principally responsible for conducting the computational experiments.
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Mästaren hade en viss benägenhet för nedstämdhet och det var
ibland mycket svårt att muntra upp honom. I fråga om skinnet

brukade jag säga åt honom, att det ju inte var enbart av ondo
om skinnet var fullt av hål och öppningar liksom en trasig

rock, eftersom man nu engång inte kunde ta den rocken av sig.
En trasig rock är mindre het i solen och den torkar fortare efter

regn. Och när två människor ligger tryckta mot varann, då är
det inte så oävet med hål och öppningar och jag för min del

skulle inte alls vilja ha skinnet annorlunda än vad det är.

- Willy Kyrklund, Mästaren Ma


