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Purpose: The purpose of this work was to describe a versatile algorithm for deformable image
registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as
CT/cone beam CT (CBCT) data.
Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image
information (i.e., intensities) with anatomical information as provided by contoured image sets.
The registration problem is formulated as a nonlinear optimization problem and solved with an
in-house developed solver, tailored to this problem. The objective function, which is minimized
during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2.
grid regularization term, which aims at keeping the deformed image grid smooth and invertible; 3. a
shape based regularization term which works to keep the deformation anatomically reasonable when
regions of interest are present in the reference image; and 4. a penalty term which is added to the
optimization problem when controlling structures are used, aimed at deforming the selected structure
in the reference image to the corresponding structure in the target image.
Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data
sets for which target registration errors from several algorithms have been reported in the literature.
On average for the 16 data sets, the target registration error is 1.17±0.87 mm, Dice similarity
coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient,
is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck
case with planning CT and daily acquired CBCT. Each image has been contoured by a physician
(radiation oncologist) or experienced radiation therapist. The results are an improvement with respect
to rigid registration. However, for the head and neck case, the sample set is too small to show statistical
significance.
Conclusions: ANACONDA performs well in comparison with other algorithms. By including
CT/CBCT data in the validation, the various aspects of the algorithm such as its ability to handle
different modalities, large deformations, and air pockets are shown. C 2015 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4894702]

Key words: deformable image registration, validation, adaptive radiotherapy, thoracic 4DCT data,
cone beam CT

1. INTRODUCTION

For accurate and efficient treatment planning, deformable im-
age registration (DIR) plays an important role. DIR has been
used in medical applications for many years and several sur-
veys of the field as well as large-scale studies have been pub-
lished.1–6 Through DIR, we can propagate contours from one
image set to another image set and map dose defined on one
image set to another as described already by Kessler.7 Con-
tour propagation is of importance for an efficient work flow,
i.e., avoiding tedious manual contouring.8 Dose mapping is
used in treatment evaluation by dose accumulation during
the treatment course through daily cone beam CTs (CBCTs)
or CT-on-rails as is illustrated, e.g., by Schwartz et al.;9 in
dose response evaluation during the treatment course based
on daily CBCTs;10 and in 4D dose accumulation to study
interplay effect.11 Another example where DIR is used is for
mapping densities between planning CT and CBCT in order
to compute dose on the daily CBCT.12

To compute a DIR, we need a measure of similarity, act-
ing as a driving force for the registration computation. The
similarity measure can be based on geometrical structures or
image intensities. DIR algorithms using a similarity measure
based on geometrical structures are described by, e.g., Brock
et al.13 and Eom et al.14 For intensity based we have, among
others, the well known Demon’s algorithm.15 Klein et al.16

describe a DIR toolbox called elastix, which includes
several intensity based algorithms.

For the geometric approach, we need landmarks, such as
surfaces, curves, or points, marking out relevant structures
defined in the two image sets. The first and crucial step
of a DIR algorithm using the geometric approach is the,
possibly manual, extraction of landmarks. Once that is done,
the landmarks are registered according to some criterion and
the result is extrapolated to the full volume. By sophisti-
cated selection of landmarks, which can be tedious and time
consuming, we can obtain a deformation vector field which
is anatomically reasonably close to the landmarks without
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F. 1. Illustration of the adaptive regularization weight β for a 2D transver-
sal slice during CT/CBCT DIR with ANACONDA. The green colorwash
highlights regions where β is increased to achieve deformation vector field
invertibility—β range from 1000 (transparent) to 10 000 (bright green).
Arrows (yellow) are pointing to regions requiring the highest β values.

being dependent on the underlying image data. This makes
it robust to noise or choice of image modality. However, we
have no information of the movements in regions where no
landmarks have been selected and cannot guarantee a reason-
able deformation vector field in such regions. This drawback
can be compensated for by using biomechanical modeling,
see, e.g., the work by Brock et al.13 In the work by Glocker
et al.,17 a discussion on advantages and disadvantages with a
geometric approach is given.

For the intensity based approach, intensities are matched
voxel- or patch-wise using some mathematical or statistical
criterion. In this case, all voxels or at least patches of voxels
take part in driving the DIR algorithm. On the other hand, we
have no guarantee that the deformation is anatomically reason-
able. In homogeneous regions, many positions can give the

same image similarity measure and we can end up with an
irregular deformation vector field.6 It has been shown that us-
ing only intensities is not enough in low contrast regions.18,19

An intensity based DIR algorithm is more difficult to develop
for multimodality applications and can be more sensitive to
unexpected contrast variations such as surgery and air cavities
if based on image similarity in terms of, e.g., sum of squared
differences only.17 Several attempts to avoid this type of prob-
lems have been presented in the literature, for instance, by
creating intermediate images through neighborhood descrip-
tors20 or Gabor features,21 and use them in the subsequent inten-
sity based DIR. Myronenko and Song22 present a novel simi-
larity measure which accounts for spatially varying intensity
distortions. To measure image similarity in CT/CBCT DIR,
various approaches have been suggested such as histogram
matching for normalization of the intensities in the CBCT im-
age prior to DIR (Ref. 23) or performing intensity correction
incorporated in the DIR process.24,25

Using a hybrid solution, like ANAtomically CONstrained
Deformation Algorithm (ANACONDA) presented in this pa-
per, can have the benefit of both the geometric approach
and the intensity based approach while avoiding their previ-
ously noted drawbacks. Most commercial systems are, to our
knowledge, either geometric or intensity based. Hybrid solu-
tions have been proposed already in 2001 by Christensen
et al.26 and the interest in such solutions in the field of
radiotherapy has increased in recent years due to limitations
of pure image intensity based algorithms.17,19,27–30 Godley
et al.27 present an algorithm where masks are created for
bladder and rectum and subsequently incorporated in a de-
mon-based algorithm for DIR in the pelvic region. In the
work by Kim et al.,19 difficulties in performing CT/CBCT
DIR for the pelvic region are pin pointed for a commercially
available intensity based system. They instead propose to use
a combination of contours and intensities. Image similarity
is measured through mutual information in order to handle
intensity range differences between CT and CBCT images. A

F. 2. The absolute value of the signed distance map of the ROI Bladder in the target image, ranging from small to high distances with increasing brightness.
Controlling ROI Bladder before and after ANACONDA has been applied is shown overlayed in dark gray and white, respectively.
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T I. Properties of the DIR-LAB data sets.

Case Dimensions Voxel size (mm3) Number of landmarks Displacement mean (SD) (mm)

1 256 × 256 × 94 0.97 × 0.97 × 2.5 300 4.01 (2.91)
2 256 × 256 × 112 1.16 × 1.16 × 2.5 300 4.65 (4.09)
3 256 × 256 × 104 1.15 × 1.15 × 2.5 300 6.73 (4.21)
4 256 × 256 × 99 1.13 × 1.13 × 2.5 300 9.42 (4.81)
5 256 × 256 × 106 1.10 × 1.10 × 2.5 300 7.10 (5.14)
6 512 × 512 × 128 0.97 × 0.97 × 2.5 300 11.10 (6.98)
7 512 × 512 × 136 0.97 × 0.97 × 2.5 300 11.59 (7.87)
8 512 × 512 × 128 0.97 × 0.97 × 2.5 300 15.16 (9.11)
9 512 × 512 × 128 0.97 × 0.97 × 2.5 300 7.82 (3.99)

10 512 × 512 × 120 0.97 × 0.97 × 2.5 300 7.63 (6.54)

framework for DIR built on a Markov random field formu-
lation and a discrete optimization is presented by Glocker
et al.17 It is applied to combinations of intensity informa-
tion and landmarks. Image similarity measure is selected de-
pending on the application. The Demon’s algorithm, in which
the sum of squared differences is used as image similarity
measure, can be combined with information from contoured
image sets as described by Gu et al.29 Starting from a finite
element model approach for geometric alignment, combina-
tions with image similarity measures internally have been
proposed.28,30

In this work, we present ANACONDA for DIR. It is avail-
able in the commercial treatment planning system RaySta-
tion (RaySearch Laboratories AB, Stockholm, Sweden). The
algorithm is general as it can be used for many body sites and
is well suited for more difficult registration problems where
image intensities alone cannot solve the problem. It combines
image information (i.e., intensities) with anatomical infor-
mation as provided by contoured image sets. The registra-
tion problem is formulated as a nonlinear optimization prob-
lem and solved with an in-house developed solver, tailored
to this problem. The DIR algorithm as described here, us-
ing a correlation coefficient to measure image similarity, can
be applied to image sets of modality CT or CBCT and is
validated using thoracic 4DCT data as well as CT/CBCT

data. Validation of the algorithm and resulting deformation
vector field is a crucial question. It can be done using real
patient data or phantom data and the measurements used
can be based on contour propagation accuracy, landmark
tracking, or image similarity. Rohlfing31 showed that high
scores on image similarity and contour propagation overlap
can be achieved even for obviously unsound DIR. A vali-
dation therefore needs to include landmark tracking. This is
confirmed in the study by Kirby et al.6 For thoracic 4DCT
DIR validation, we use the publically available data described
by Vandemeulebroucke et al.32 and Castillo et al.33 Both data
sets have landmarks marked in a reference and a target phase,
thus allowing for, among other types of comparison, compu-
tation of target registration errors. For CT/CBCT DIR valida-
tion, we use two pelvic cases with planning CT and a total of
seven daily CBCTs as well as one head and neck case with
planning CT and three daily CBCTs made available through a
collaboration with Princess Margaret Cancer Centre, Toronto,
Canada. Planning CTs and daily CBCTs have been contoured
by a physician or experienced radiation therapist thus allow-
ing for validation based on contour propagation accuracy.

The way contours are incorporated in the ANACONDA
objective function is inspired by chamfer matching (origi-
nally described for 2D images by Barrow et al.34). For rigid
image registration, chamfer matching has proved useful in

F. 3. The reference phase of DIR-LAB 1. To the left, a volume rendering with the landmarks in 3D and to the right, a 2D coronal slice through the 3D volume.

Medical Physics, Vol. 42, No. 1, January 2015
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T II. Properties of the POPI data sets.

Case Dimensions Voxel size (mm3) Number of landmarks

1 512 × 512 × 141 0.98 × 0.98 × 2.0 100
2 512 × 512 × 169 0.98 × 0.98 × 2.0 100
3 512 × 512 × 170 0.88 × 0.88 × 2.0 100
4 512 × 512 × 187 0.78 × 0.78 × 2.0 100
6 512 × 512 × 161 1.17 × 1.17 × 2.0 100
ICCR 512 × 512 × 141 0.98 × 0.98 × 2.0 40

medical applications35,36 but so far, to our knowledge, not
commonly used for hybrid DIR . In the work by Liu,37 a
chamfer matching approach is taken to DIR but using only
geometric information and developed for 2D images. Collins
et al.38 use chamfer distances from automatically extracted
cortical sulci to guide DIR. However, it is not clear how
the information is incorporated into the objective function.
Furthermore, the weighting between image information and
contoured image sets is not explicitly stated.

The algorithms, of the above referred, we have found
to be most similar to ANACONDA are described by Kim
et al.19 and Gu et al.29 For those we point out the follow-
ing differences: In the algorithm by Kim et al.,19 a separate
step is required for handling rigid bone registration as well as
manual interaction to identify regions such as rectum gas and
motion artifacts. These regions are then excluded from image
similarity measurements. Image similarity is measured us-
ing mutual information in comparison with correlation coef-
ficient for ANACONDA. In comparison with the algorithm
by Gu et al.,29 ANACONDA has the advantage of being

applicable to CT/CBCT DIR. Furthermore, ANACONDA, as
mentioned above, uses a novel approach for how contours
are incorporated in the objective function. Glocker et al.17

make a distinction between coupled and hybrid registration
using two separate steps—one geometric step followed by
one intensity based step—is being made. We remark that
ANACONDA is a coupled registration solution as the objec-
tive function includes both the geometric and the intensity
information.

2. METHOD AND MATERIALS

2.A. The ANACONDA deformable registration
algorithm

Denote the reference image R, the target image T , and the
rigid transformation aligning the images M : R3→ R3. Let the
deformation grid be a set of gridpoints arranged in a regular
manner on a lattice dividing space into boxshaped elements
(voxels). The DIR algorithm computes a vector field defined
on the grid. This vector field is called a deformation vector
field. The deformation vector at gridpoint xi ∈R3 is denoted
vi ∈R3. The registration problem is formulated as a nonlinear
optimization problem with objective function f : Rn→ R

f (v)= αC(v)+ (βH(v)+γS(v))+δD(v), (1)

where α, γ, δ ∈R are non-negative weights, n is the number
of variables, and β : R3→ R is a non-negative, real valued
weight function. The value of n equals three times the num-
ber of gridpoints in the deformation grid. The terms C(v),
H(v), S(v), and D(v) are briefly introduced in the following
and then described in more detail in the subsequent sections.

T III. Properties of CT/CBCT data.

Prostate 1

Modality CT CBCT CBCT CBCT
Name PlanCT “Gas above Bladder” “Gas and Full Rectum” Small Bladder
Voxel size (mm3) 0.95 × 0.95 × 2.0 1.0 × 1.0 × 2.0
Dimensions 512 × 512 × 166 410 × 410 × 60
Bladder vol (mm3) 218.44 × 103 163.53 × 103 231.71 × 103 150.70 × 103

“Rectum” vol (mm3) 53.75 × 103 55.04 × 103 115.41 × 103 47.30 × 103

Prostate 2

Modality CT CBCT CBCT CBCT CBCT
Name PlanCT Small

Bladder
“Gas” “Full Bladder

and Rectum”
“Normal”

Voxel size (mm3) 0.89×0.89×2.0 1.0 × 1.0 × 2.0
Dimensions 512 × 512 × 155 410 × 410 × 60
Bladder vol (mm3) 456.66 × 103 102.66×103 129.69 × 103 253.95 × 103 167.83 × 103

Rectum vol (mm3) 32.88 × 103 34.8 × 103 52.63 × 103 53.42 × 103 35.07 × 103

Head and Neck

Modality CT CBCT CBCT CBCT
Name PlanCT “CBCT 5” “CBCT 10” “CBCT 15”
Voxel size (mm3) 0.98 × 0.98 × 2.0 1.0 × 1.0 × 2.0
Dimensions 512 × 512 × 193 410 × 410 × 132
“Parotid (right)” vol (mm3) 28.91 × 103 25.14 × 103 24.26 × 103 20.70 × 103

“Parotid (left)” vol (mm3) 25.69 × 103 19.20 × 103 20.22 × 103 16.40 × 103

Medical Physics, Vol. 42, No. 1, January 2015
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F. 4. Prostate 2 with PlanCT volume rendered to the left and rigidly fused with Small Bladder to the right. ROIs Bladder (yellow), “Prostate” (red), and
Rectum (light blue) as solid lines in PlanCT and dashed lines in Small Bladder.

The image similarity is measured by the correlation coeffi-
cient C(v).

The regularization of the deformation grid is controlled
by the term βH(v)+γS(v). The first part of the regulariza-
tion term, βH(v), which encourages the coordinate functions
to become approximate minimizers of the Dirichlet energy,
determines the smoothness and invertibility of the deforma-
tion vector field. The local smoothness and invertibility of
the deformation vector field is controlled by the non-negative,
real valued weight function β : R3→ R which is defined on
the deformation grid. If β is large, the deformation vec-
tor field will become invertible. To prevent generating in-
verted elements, the algorithm implements a restart strategy
to increase β when needed. After convergence of the opti-

mization algorithm, the determinant of the Jacobian matrix
is computed at all gridpoints and if any negative values are
detected, β is locally increased in that region of the deforma-
tion vector field. The second part of the regularization term,
γS(v), penalizes large shape deviations of regions of interest
(ROIs) defined in R.

If the user includes ROIs or points of interest (POIs) to
guide the deformation algorithm, this a priori information
which is incorporated into D(v). The minimization of f (v)
is computed by a nonlinear limited memory solver.39 It can
be noted that C(v) and D(v) involve gradient calculations
on image data using finite differences and trilinear interpo-
lation while gradients of H(v) and S(v) can be computed us-
ing analytical expressions. To reduce the influence of image

F. 5. Head and Neck with PlanCT and CBCT 15 are shown rigidly fused. ROIs Parotid (left) (green) and Parotid (right) (blue) as solid lines in PlanCT and
dashed lines in CBCT 15.

Medical Physics, Vol. 42, No. 1, January 2015
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F. 6. Segmentation of the left (pink) and right (green) lungs for DIR-LAB 1. To the left, volume rendered and the lungs as wireframes and to the right, a 2D
slice through the volume.

artifacts, the images R and T are filtered using a Gaussian
filter with σ = 1/3 voxel. The optimization problem is solved
on three resolution levels, 10, 5, and 2.5 mm, and the result-
ing deformation vector field is used as initial solution to the
next resolution level.

2.A.1. Image similarity measure

Looked upon as functions, the images describe mappings
R,T : R3→ R which are computed using trilinear interpola-
tion. The deformation vector field acts on R and the similarity
between the deformed image and T is measured by the corre-
lation coefficient

C (v)=


i(R(xi)− R̄)(T(M(xi)+ vi)−T̄)
i(R(xi)− R̄)2


i(T(M(xi)+ vi)−T̄)2

. (2)

The sums are computed over an index set which can be the
whole of R or any subset. R̄ and T̄ are the mean inten-
sity computed over the gridpoints which are contained in
the index set and are mapped into T . Typical index sets
are the patient external ROI or some focus region(s) in R.
It is well known that C is invariant to linear transforma-
tions of the image intensities. This is an advantage when
using ANACONDA for CT/CBCT DIR. Methods using for
instance sum of squared intensity differences as image simi-
larity measure will require a special step to handle the differ-
ences in intensity range between CT and CBCT. See, e.g., the
work by Hou et al.,23 where histogram matching is used.

2.A.2. Regularization

A regularization of the deformation vector field is ob-
tained by minimizing the Dirichlet energy for the coordinate
functions of the deformation vector field. Since minimizers

of the Dirichlet energy are harmonic maps, H(v) is designed
to penalize deviation from the mean value property. Another
motivation for this approach is the fact that harmonic map-
pings of triangular meshes are invertible under reasonable
assumptions.40 This follows from the maximum principle for
harmonic functions. The voxel containing vi is box shaped
and the six face connected gridpoints are denoted Ni. We then
define

H (v)=

i

�
vi−

1
ni


j ∈Ni

v j
�2
, (3)

which is a quadratic expression in the optimization vari-
ables with the required properties. When the optimizer has
converged, the determinant of the Jacobian of the deforma-
tion field is computed to detect inverted elements. If such
elements are detected, the weighting function β is modified
in the following way: the values of β in a 1 cm neighborhood
around the inverted grid voxels are multiplied by 2.0 and the
resulting weight image is filtered by a Gaussian filter with
σ = 3.0 to achieve a smooth varying weight function. This
strategy is illustrated in Fig. 1. Decreasing the size of the
neighborhood will result in a larger number of restarts, but a
more local influence.

The second part of the regularization term is called shape
based regularization. Assume there is a triangular mesh rep-
resenting an anatomical region defined in R. We would like
the deformation algorithm to deform the mesh in a reason-
able manner. For example, although smooth and invertible, a
deformation vector field could potentially deform structures
in a nonintuitive way, if the driving similarity measure is not
reliable. This could happen for very noisy images with severe
artifacts or erroneous landmarks. The aim of the shape based
regularization term is to add robustness to protect against
erroneous image data.

Medical Physics, Vol. 42, No. 1, January 2015
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Deformation of the shape is measured by the function

S(v) =

k


i, j

∥(M(qk
i )−M(qk

j ))− (M(qk
i )+ vi

−(M(qk
j )+ v j))∥2=


k


i, j

∥vi− v j∥2, (4)

where qk
i are the mesh vertices for shape constraining ROI

k expressed as mean value coordinates41 in the variables
and the sum is computed over every pair (i, j) which de-
fines an edge of the mesh. The deformation vectors vi and v j
are also expressed in terms of mean value coordinates since
vertices of the triangle meshes do not in general correspond
to voxel centra in the deformation grid. We remark that S(v)
is invariant to global translations and rotations as it only de-
pends on differences between deformation vectors.

2.A.3. Controlling structures

The user can choose to include controlling ROIs and
controlling POIs to guide the deformation algorithm. The re-
sulting objective function is defined as

D(v)=

k


i

d2
k(M(qk

i )+ vi)+

j

∥M(qk
j )+ v j−qt

j∥2, (5)

where dk : R3→ R is the approximate Euclidean distance to
controlling ROI k and qk

i is a vertex of the triangular mesh k,
representing the controlling ROI expressed in terms of mean
value coordinates of the eight gridpoints defining the smallest
box which contains the vertex on the reference image. The idea
here is to extend the chamfer matching technique originally
introduced by Barrow et al.34 By computing a signed distance
map, using the fast marching method described by Sethian,42

which approximates the distance from a point in space to the
surface of the controlling ROI defined in the target image, the
expression above can be efficiently computed. The gradient is
computed using finite differences. The chamfer matching tech-
nique was chosen because it introduces a large capture range
allowing fast convergence even for ROIs with large differences
in size. This situation often occurs for bladders with different
filling conditions. The need for controlling structures in the
pelvic region is discussed in Sec. 3.B and illustrated by Foskey
et al.43 and Kim et al.19 Controlling structures are illustrated by
Fig. 2. There, the absolute values in the signed distance map of
the ROI “Bladder” in the target image are shown. The Bladder
from the reference image rigidly mapped to the target image is
shown overlayed in dark gray and the Bladder mapped accord-
ing to ANACONDA using Bladder as controlling structure in
white.

The last sum in Eq. (5) penalizes controlling POIs where
the target point for qj ∈ R is denoted qt

j ∈T . Since, in this
case, a known one-to-one mapping exists, there is no need
for a distance map. However, the POI defined in the reference
image must be contained in the deformation field.

F. 7. Fusion views for the reference phase and the target phase before (top)
and after (bottom) ANACONDA with focus region applied. Lungs have been
contoured but are not used as controlling ROIs in ANACONDA. Solid line
shows the ROIs in the reference phase and dashed line the ROIs in the target
phase deformed to the reference phase.

2.B. Materials

In this Subsection, we describe the data sets which we
have used to validate ANACONDA.

2.B.1. Thoracic 4DCT data

We want to benchmark ANACONDA with respect to other
algorithms and for this purpose, use the publically available
data described in the following.

2.B.1.a. Deformable image registration laboratory (DIR-
LAB). The DIR-LAB, the Department of Radiation Physics
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T IV. Target registration error mean for ANACONDA in mm (standard deviation) when measured in 3D, RL,
AP, and SI directions.

Data set Focus 3D RL AP SI

DIR-LAB 1 Lungs 1.07 (0.50) 0.38 (0.30) 0.42 (0.33) 0.78 (0.50)
— 1.63 (1.07) 0.44 (0.35) 0.51 (0.41) 1.34 (1.11)

DIR-LAB 2 Lungs 1.05 (0.52) 0.43 (0.33) 0.43 (0.35) 0.70 (0.53)
— 2.38 (2.55) 0.54 (0.46) 0.61 (0.63) 2.03 (2.61)

DIR-LAB 3 Lungs 1.17 (0.62) 0.46 (0.39) 0.50 (0.43) 0.80 (0.57)
— 3.93 (3.20) 0.83 (0.75) 1.12 (1.14) 3.40 (3.22)

DIR-LAB 4 Lungs 1.48 (0.96) 0.63 (0.68) 0.65 (0.52) 0.92 (0.86)
— 2.38 (2.28) 0.73 (0.77) 0.81 (0.86) 1.85 (2.22)

DIR-LAB 5 Lungs 1.41 (1.24) 0.60 (0.71) 0.60 (0.78) 0.91 (0.94)
— 3.34 (3.34) 0.75 (0.82) 1.16 (1.61) 2.67 (3.17)

DIR-LAB 6 Lungs 1.51 (1.00) 0.55 (0.47) 0.65 (0.71) 1.03 (0.87)
— 2.65 (2.86) 0.65 (0.66) 0.73 (0.67) 2.25 (2.87)

DIR-LAB 7 Lungs 1.24 (0.77) 0.49 (0.52) 0.54 (0.49) 0.80 (0.66)
— 6.80 (6.16) 1.35 (1.22) 1.96 (2.25) 5.95 (6.05)

DIR-LAB 8 Lungs 1.72 (2.46) 0.53 (0.67) 0.71 (1.20) 1.29 (2.17)
— 9.89 (9.56) 1.21 (1.13) 2.90 (3.08) 8.90 (9.45)

DIR-LAB 9 Lungs 1.20 (0.66) 0.51 (0.43) 0.54 (0.47) 0.75 (0.60)
— 3.25 (2.87) 0.83 (0.76) 1.48 (1.42) 2.43 (2.72)

DIR-LAB 10 Lungs 1.21 (0.69) 0.40 (0.33) 0.53 (0.43) 0.87 (0.69)
— 2.72 (3.50) 0.47 (0.45) 0.82 (0.92) 2.30 (3.52)

POPI 1 Lungs 0.82 (0.38) 0.32 (0.24) 0.34 (0.29) 0.57 (0.37)
— 1.10 (0.94) 0.40 (0.36) 0.48 (0.71) 0.78 (0.68)

POPI 2 Lungs 1.20 (1.02) 0.53 (0.62) 0.49 (0.53) 0.77 (0.85)
— 3.52 (4.95) 0.91 (1.00) 1.07 (1.59) 2.90 (4.80)

POPI 3 Lungs 0.82 (0.54) 0.33 (0.31) 0.33 (0.26) 0.54 (0.54)
— 1.52 (2.10) 0.55 (0.72) 0.41 (0.40) 1.23 (2.02)

POPI 4 Lungs 0.88 (1.43) 0.31 (0.31) 0.26 (0.19) 0.68 (1.43)
— 2.26 (3.47) 0.48 (0.61) 0.51 (0.75) 2.00 (3.43)

POPI 6 Lungs 0.85 (0.49) 0.34 (0.31) 0.41 (0.35) 0.53 (0.40)
— 1.25 (1.54) 0.39 (0.33) 0.44 (0.44) 0.96 (1.54)

POPI ICCR Lungs 1.07 (0.62) 0.47 (0.53) 0.46 (0.37) 0.64 (0.53)
— 1.20 (1.24) 0.48 (0.31) 0.46 (0.44) 0.77 (1.28)

Average DIR-LAB Lungs 1.31 (0.94) 0.50 (0.48) 0.55 (0.57) 0.88 (0.84)
Average DIR-LAB — 3.90 (3.74) 0.78 (0.74) 1.21 (1.30) 3.31 (3.70)
Average POPI Lungs 0.94 (0.73) 0.38 (0.38) 0.38 (0.33) 0.62 (0.67)
Average POPI — 1.81 (2.37) 0.54 (0.55) 0.56 (0.72) 1.44 (2.29)

Average Lungs 1.17 (0.87) 0.46 (0.45) 0.49 (0.48) 0.79 (0.78)
— 3.11 (3.23) 0.69 (0.67) 0.97 (1.08) 2.61 (3.17)

at University of Texas M. D. Anderson Cancer Center, is
behind an initiative of making validation data publically avail-
able from http//www.dir-lab.com. Currently, it is possible to
download ten thoracic 4DCT images, each with ten phases,
with 300 landmarks marked in the reference (maximum inha-
lation) phase and their corresponding positions in the target
(maximum exhalation) phase.

For detailed description of the data sets, we refer to
Castillo et al.33,44 and Table I. One example from the DIR-
LAB data sets with landmarks is shown in Fig. 3, volume
rendered to the left and a 2D slice to the right. Twenty-
one algorithms have been benchmarked against the DIR-
LAB data as reported on the webpage (accessed June 11,
2014). The algorithms range from a comparison between
different implementations of the Demon’s algorithm (orig-

inally described for DIR by Thirion15) on GPU to being
tailored for thoracic 4DCT data by using trajectory modeling.

2.B.1.b. POPI. The Léon Bérard Cancer Center & CRE-
ATIS Laboratory, Lyon, France, is behind another initiative on
making validation data publically available from http://www.
creatis.insa-lyon.fr/rio/popi-model/. The data are referred to as
the point-validated pixel-based breathing thorax model (POPI
model). Currently it is possible to download the original POPI
model consisting of one thoracic 4DCT image with 40 land-
marks marked in the reference and the target phase; and six
thoracic 4DCT images, each with ten phases, with 100 land-
marks marked in the reference and the target phase.

For a detailed description of the data sets, we refer to Van-
demeulebroucke et al.,32,45 where not only the data sets but
also algorithmic benchmarkings are presented, and Table II.
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F. 8. Target registration error mean for ANACONDA in comparison with rigid registration as well as the worst and best published results.

POPI 5 has been excluded as we had problems with import-
ing the data available on the POPI web page for that specific
patient and thus, could not include it in the benchmarking.

2.B.2. CT/CBCT data

Through a collaboration with Princess Margaret Cancer
Centre, Toronto, Canada, we have access to planning CT and
daily CBCT images for two pelvic cases and one head and
neck case, in the following referred to as “Prostate 1,” “Pros-
tate 2,” and “Head and Neck,” respectively. All CBCTs have
been acquired using Elekta XVI. The CBCTs were rigidly
registered to their respective planning CT using the inten-
sity based rigid registration available in RayStation. The rigid
registration algorithm uses the correlation coefficient as im-
age similarity measure and the measure is evaluated over all
voxels in the patient external ROI on the floating image.

2.B.2.a. Pelvic. For Prostate 1 and Prostate 2, three and
four, respectively, daily CBCT data sets were chosen for
which the difference with respect to the planning geometry
differed a lot as summarized in Table III. Bladder, prostate,
and rectum were contoured by a physician or experienced
radiation therapist on both the planning CT and the daily
CBCTs. In addition to that, bone was segmented using the
automatic bone segmentation available in RayStation. We use
these data sets to show the impact of the controlling ROIs
which allows us to handle cases with large deformations in
low contrast regions as well as occurrences of air pockets and
gas. In Fig. 4, “Plan CT” and “Small Bladder” are shown for
Prostate 2. We remark that for both Prostate 1 and Prostate
2, the bladder is full and extends outside the field-of-view if
rigidly propagated to any of the daily CBCTs.

2.B.2.b. Head and neck. For Head and Neck, the left and
right parotid were contoured by a physician or experienced
radiation therapist on both the planning CT and the daily
CBCTs. Fraction 5, 10, and 15 were chosen to show the
performance on CT/CBCT DIR in cases where controlling

ROIs are not necessary to use. See Table III for details. In
Fig. 5, PlanCT and “CBCT 15” are shown.

2.B.3. Validation metrics

We have validated ANACONDA based on landmark track-
ing (when applicable), contour propagation accuracy, and im-
age similarity. In addition to that, we have for the pelvic data
measured the mean of the Jacobian determinant for bone to
validate that bone is not deformed by ANACONDA. We have
also computed the number of inverted elements in the defor-
mation vector fields.

Landmark tracking was done for the thoracic 4DCT data
using the landmarks described above. We measured the differ-
ence between the position obtained by propagating a point in
the reference image to the target image with the correspond-
ing position in the target image, the target registration error.
Mean and standard deviation were measured in 3D as well as
superior–inferior (SI), anterior–posterior (AP), and right–left
(RL) directions.

For contour propagation accuracy, for the CT/CBCT data,
we used the provided contours. For the thoracic 4DCT data,
we contoured the left and the right lung in the reference
phase and the target phase using model based segmentation
as provided by RayStation. The procedure was performed in
an automatic way. We visually verified that the resulting con-
tours reasonably outlined the two lungs. One example of a
contoured image set can be seen in Fig. 6. For each struc-
ture on the reference phase, we propagated it to the target
phase and compared it with the corresponding structure con-
toured on the target image. There are many available met-
rics for measuring spatial overlap. We have used Dice simi-
larity coefficient (DSC), first described by Dice46 as it is a
commonly used metric in medical imaging. DSC ranges be-
tween 0, for no overlap, and 1, for complete overlap.

For image similarity, we used C(v), see Eq. (2), i.e., the
same measure as during the optimization process.
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T V. DSC for propagated contours in comparison with original contours, image similarity, and number of
invertible elements for ANACONDA. As additional information to the number of inverted element, the smallest
Jacobian determinant (Jac. Det.) is listed. Rigid registration results are listed in parenthesis for comparison.

DCS DCS Image Number of Minimum
Data set Focus lung (left) lung (right) similarity inverted elements Jac. Det.

DIR-LAB 1 Lungs 0.98 (0.94) 0.99 (0.95) 0.97 (0.81) 0 0.31
DIR-LAB 1 — 0.99 (0.94) 0.99 (0.95) 0.99 (0.94) 0 0.53
DIR-LAB 2 Lungs 0.99 (0.95) 0.99 (0.95) 0.96 (0.79) 0 0.22
DIR-LAB 2 — 0.99 (0.95) 0.99 (0.95) 0.99 (0.94) 0 0.26
DIR-LAB 3 Lungs 0.99 (0.94) 0.99 (0.93) 0.96 (0.68) 0 0.34
DIR-LAB 3 — 0.99 (0.94) 0.99 (0.93) 0.99 (0.91) 0 0.44
DIR-LAB 4 Lungs 0.98 (0.91) 0.98 (0.92) 0.96 (0.71) 0 0.01
DIR-LAB 4 — 0.99 (0.91) 0.99 (0.92) 0.99 (0.91) 0 0.01
DIR-LAB 5 Lungs 0.98 (0.95) 0.99 (0.93) 0.96 (0.76) 0 0.11
DIR-LAB 5 — 0.99 (0.95) 0.99 (0.93) 0.99 (0.92) 0 0.12
DIR-LAB 6 Lungs 0.96 (0.85) 0.98 (0.86) 0.89 (0.51) 0 0.02
DIR-LAB 6 — 0.97 (0.85) 0.98 (0.86) 0.97 (0.84) 0 0.03
DIR-LAB 7 Lungs 0.98 (0.89) 0.97 (0.90) 0.95 (0.63) 0 0.04
DIR-LAB 7 — 0.98 (0.89) 0.97 (0.90) 0.97 (0.87) 0 0.03
DIR-LAB 8 Lungs 0.99 (0.90) 0.99 (0.89) 0.94 (0.48) 0 0.01
DIR-LAB 8 — 0.99 (0.90) 0.99 (0.89) 0.98 (0.83) 0 0.06
DIR-LAB 9 Lungs 0.98 (0.91) 0.98 (0.92) 0.94 (0.58) 0 0.26
DIR-LAB 9 — 0.98 (0.91) 0.98 (0.92) 0.98 (0.86) 0 0.01
DIR-LAB 10 Lungs 0.98 (0.90) 0.98 (0.91) 0.95 (0.66) 0 0.03
DIR-LAB 10 — 0.98 (0.90) 0.99 (0.91) 0.98 (0.87) 0 0.01
POPI 1 Lungs 0.98 (0.95) 0.99 (0.94) 0.96 (0.61) 0 0.04
POPI 1 — 0.99 (0.95) 0.99 (0.94) 0.99 (0.92) 0 0.09
POPI 2 Lungs 0.98 (0.92) 0.98 (0.91) 0.93 (0.54) 0 0.26
POPI 2 — 0.98 (0.92) 0.98 (0.91) 0.97 (0.86) 0 0.01
POPI 3 Lungs 0.98 (0.94) 0.98 (0.90) 0.96 (0.56) 0 0.23
POPI 3 — 0.98 (0.94) 0.99 (0.90) 0.98 (0.87) 0 0.06
POPI 4 Lungs 0.99 (0.93) 0.99 (0.93) 0.94 (0.62) 0 0.06
POPI 4 — 0.99 (0.93) 0.99 (0.93) 0.98 (0.89) 0 0.15
POPI 6 Lungs 0.99 (0.95) 0.99 (0.95) 0.97 (0.71) 0 0.46
POPI 6 — 0.99 (0.95) 0.99 (0.95) 0.98 (0.91) 0 0.33
POPI ICCR Lungs 0.98 (0.94) 0.99 (0.93) 0.96 (0.58) 0 0.04
POPI ICCR — 0.99 (0.94) 0.99 (0.93) 0.99 (0.92) 0 0.20

Average Lungs 0.98 (0.92) 0.99 (0.92) 0.95 (0.64) 0 0.15
Average — 0.98 (0.92) 0.99 (0.92) 0.98 (0.89) 0 0.15

3. RESULTS

3.A. Thoracic 4DCT data

In the following, we have used the default settings for
ANACONDA provided in RayStation 4.5 for CT/CT DIR,
which means that the real valued weights are α = 1.0, γ = 0.5,
and δ = 0.5. β(vi)= 400.

Most algorithms listed on the DIR-LAB webpage evaluate
the objective function only inside the lung region. We there-
fore decided to segment the lung region, using the region grow-
ing algorithm available in RayStation, and include results for
ANACONDA with and without focus region. Neither shape
constraint nor controlling structures were used. In Fig. 7, DIR-
LAB 1 is shown as example. The reference phase is fused with
the target phase before (top) and after (bottom) ANACONDA
with focus region applied.

In Table IV, the target registration errors when using
ANACONDA are listed. When using focus region, we have

an average error which is 1.17 mm in 3D in comparison with
8.33 mm before ANACONDA was applied. The errors are, as
expected, highest in the superior–inferior as that is where the
largest movements are.

In Fig. 8, the target registration errors are compared with
published results. We have included the best and the worst
results listed on the DIR-LAB webpage (by June 11, 2014)
and by Vandemeulebroucke et al.32,45 For DIR-LAB 1, 2, and
5, results for the 21 algorithms have been reported, for DIR-
LAB 3 and 4 seventeen, and for DIR-LAB 6–10, nine algo-
rithms. For POPI 1–6, results from four algorithms have been
reported and for POPI ICCR, five algorithms. We remark
that for the DIR-LAB data sets, we have used the 300 land-
marks possible to download, while some of the algorithms in
Fig. 8 have used the complete set of landmarks as reported on
the DIR-LAB webpage. We can conclude that ANACONDA
performs well in comparison, especially when using focus
region. Without focus region, we note that two cases are
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T VI. Results for the pelvic data using rigid registration, ANACONDA without controlling ROIs, ANA-
CONDA with Bladder, Prostate, and Rectum as controlling ROIs. Metrics included are DSC for the different
ROIs, image similarity, mean of the Jacobian determinant of the deformation vector field, and number of inverted
elements.

Prostate 1

Gas above Bladder Gas and Full Rectum Small Bladder

DSC Bladder
Rigid 0.83 0.75 0.79
No controlling 0.81 0.82 0.73
Controlling 0.99 0.99 0.98

DSC Prostate
Rigid 0.89 0.87 0.94
No controlling 0.94 0.89 0.96
Controlling 0.98 0.95 0.98

DSC Rectum
Rigid 0.77 0.51 0.74
No controlling 0.85 0.60 0.69
Controlling 0.97 0.93 0.96

Image similarity
Rigid 0.47 0.47 0.50
No controlling 0.82 0.91 0.83
Controlling 0.81 0.79 0.80

Mean Jacobian determinant
No controlling 0.92 0.91 0.92
Controlling 0.93 0.98 0.95

Number of inverted elements
No controlling 0 0 0
Controlling 0 0 0

Prostate 2

Small Bladder Gas Full Bladder and Rectum Normal

DSC Bladder
Rigid 0.36 0.46 0.73 0.55
No controlling 0.38 0.47 0.75 0.56
Controlling 0.98 0.93 0.96 0.96

DSC Prostate
Rigid 0.72 0.70 0.57 0.69
No controlling 0.72 0.73 0.55 0.68
Controlling 0.97 0.95 0.98 0.97

DSC Rectum
Rigid 0.58 0.47 0.55 0.49
No controlling 0.60 0.63 0.60 0.48
Controlling 0.97 0.92 0.93 0.90

Image similarity
Rigid 0.64 0.73 0.70 0.68
No controlling 0.90 0.90 0.89 0.90
Controlling 0.84 0.85 0.89 0.87

Mean Jacobian determinant
No controlling 0.99 1.00 1.01 1.01
Controlling 0.99 1.00 1.02 1.01

Number of inverted elements
No controlling 0 0 0 0
Controlling 0 0 0 0
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especially problematic, DIR-LAB 7 and 8. Those are further
discussed in Sec. 4.

In Table V, DSC for propagated contours is listed together
with the correlation coefficient, i.e., a measure on image
similarity, and the number of inverted elements. In this case
we cannot compare to the results for other algorithms, but
can conclude that the figures are close to 1 which shows
that ANACONDA performs well both with respect to con-
tour propagation and image similarity. Furthermore, that the
resulting deformation vector fields contain no inverted ele-
ments. Rigid registration results are listed for comparison.

The average computation time to run ANACONDA for the
DIR-LAB and POPI data sets was 17 s on a machine running
Windows 7 (64-bit) operating system with 24 GB installed
memory and Intel Xeon W3580 (4 cores) CPU. The GPU was
a NVIDIA GTX 760.

3.B. CT/CBCT data

In the following, we have used the default settings for
ANACONDA provided in RayStation 4.5 for CT/CBCT DIR,
which means that the real valued weights are α = 1.0, γ = 0.5,
and δ = 0.5. β(vi)= 1000.

The results for the CT/CBCT data are summarized by Ta-
ble VI (Prostate 1 and Prostate 2) and Table VII (Head and
Neck). From Table VI, it is evident that image information
alone is not enough for CT/CBCT DIR in the pelvic region
for large deformations; image similarity increases signifi-
cantly compared with rigid registration (p < 0.001), while
DCS remains on a rather low level. This is pointed out by
several authors, e.g., Kim et al.19 Using Bladder, Prostate,
and Rectum as controlling ROIs, we can achieve a DIR with
both high values for DCS (p= 0.0078 for Bladder, Prostate,
and Rectum being significantly better than rigid registration)
and for image similarity. At the same time bone is kept rigid,
which is shown by a mean Jacobian determinant being close
to 1.0. The controlling ROIs were not used as shape con-
straints. We remark that image quality is better for the daily

T VII. Results for Head and Neck using rigid registration and ANA-
CONDA (without controlling ROIs). Metrics included are DSC for the dif-
ferent ROIs, image similarity, and number of inverted elements.

CBCT 5 CBCT 10 CBCT 15

DSC Parotid (left)
Rigid 0.65 0.67 0.63
No controlling 0.78 0.81 0.81

DSC Parotid (right)
Rigid 0.84 0.77 0.74
No controlling 0.88 0.82 0.85

Image similarity
Rigid 0.63 0.63 0.59
No controlling 0.76 0.76 0.73

Number of inverted elements
No controlling 0 0 0

CBCT in Prostate 2 than in Prostate 1 which explains the
slightly better results.

It is of interest to investigate the performance of ANA-
CONDA when using a subset of the ROIs as controlling ROIs
to see the affect on the alignment of noncontrolling ROIs. For
this purpose, we have ran ANACONDA using only Bladder
and Rectum as controlling ROIs. For Prostate 1, the results
are similar to what is presented in Table VI except for DCS
Prostate which remains on a level equivalent to using no
controlling ROIs. For Prostate 2, where the image quality is
better, mean DCS Prostate is 0.86, in comparison with 0.69
for no controlling ROIs and 0.97 for Bladder, Prostate, and
Rectum as controlling ROIs. This indicates that the control-
ling ROIs have influence of the alignment of noncontrolling
ROIs in cases when the image quality is good enough.

From Table VII, we can conclude that ANACONDA han-
dles CT/CBCT DIR well. DSC for Parotid (left) and Parotid
(right) as well as image similarity has values closer to 1 than
if rigid registration only was used. In this case, the sample
set is too small to show statistical significance (p= 0.125).
We remark that for Head and Neck, we ran ANACONDA us-
ing no controlling ROIs. Moreover that the CBCT data suffer
from dental filling artifacts which affects the image similarity
measure. Finally, the volume of parotid is small which means
that discretization effects are high.

The average computation time to run ANACONDA for
Prostate 1 and Prostate 2 was 18 s with and 10 s without control-
ling structures on a machine running Windows 7 (64-bit) oper-
ating system with 24 GB installed memory and Intel Xeon
W3580 (4 cores) CPU. The GPU was a NVIDIA GTX 760.

4. DISCUSSION AND CONCLUSIONS

We have presented a deformable image registration algo-
rithm for applications in radiotherapy, ANACONDA. The
algorithm is commercially available through the treatment
planning system RayStation (RaySearch Laboratories AB,
Stockholm, Sweden). The aim of this work was to describe
the algorithm in order to avoid users needing to work with
“a black box” as well as to make validation of the algo-
rithm public. ANACONDA was benchmarked for thoracic
4DCT data and CT/CBCT data of the pelvic and the head and
neck region. For the thoracic 4DCT data, it was compared
with results from other published algorithms and proven to
perform well in comparison. For CT/CBCT data, contoured
data sets were used and it was shown that ANACONDA can
handle both large deformations and multimodality, in terms
of CT/CBCT, data. To summarize, ANACONDA is a versa-
tile algorithm due to the combination of using image simi-
larity as well as, if wanted, anatomical information. It can
be precise in cases such as bifurcation tracking in 4DCT of
the thorax region and at the same time handle low contrast
regions found in CT/CBCT registrations of the pelvic region.

ANACONDA is formulated as a nonlinear optimization
problem with an objective function consisting of a weighted
linear combination of different terms. The weights have been
experimentally determined by evaluating the algorithm on

Medical Physics, Vol. 42, No. 1, January 2015



52 O. Weistrand and S. Svensson: ANACONDA for DIR 52

data sets provided to us through research collaborations as
well as through cooperation with clinics using the RaySta-
tion treatment planning system. The weights are not tailored
to the data sets used for validation in this paper. Since the
pelvic region is a body region where controlling structures
are more likely required, the weight for the controlling struc-
tures, δ, has been given a numerical value high enough to
handle large, but reasonable, anatomical changes found in
this region due to differences in bladder and rectum fill-
ing. If δ is too large, e.g., 10 times larger than the cho-
sen value, the influence from the image similarity term is
not enough to give a satisfactory registration in regions not
covered by controlling structures. If δ is given small numer-
ical value, e.g., 10 times lower than the chosen value, the
term in the objective function handling controlling struc-
tures will not have a significant influence of the objective
function. To study in detail the weight for β, we recom-
puted the results for the thoracic 4DCT data when varying
β by 10%. For β = 440.0, the mean target registration error
was 1.15±0.82 mm and for β = 360.0, 1.17±0.86 mm. This
can be compared with the reported value 1.17±0.87 mm (β
= 400.0). Hence, ANACONDA is stable with respect to β.
One often mentioned difficulty with DIR is to keep bone rigid
even when large deformations occur close to the bone re-
gions. As shown for the pelvic data, ANACONDA performs
well on this aspect. However, we remark that shape based
regularization can be used for this purpose if further empha-
size is required, hence, by creating a bone ROI, include it as
shape constraint and possibly increase γ. The exact numer-
ical values of the weights α, β, γ, and δ are found in Sec. 3.

ANACONDA differs from other hybrid DIR solutions on
various aspects. The novel way of incorporating contour
information through a chamfer matching inspired approach
and by using an adaptive regularization of the grid in order to
avoid inverted elements are the two most interesting.

The performance of ANACONDA without focus region on
DIR-LAB 7 and DIR-LAB 8 is not satisfactory. The ana-
tomical changes in these data sets are large, which is evident
from the mean target registration error when no DIR is used.
The optimizer, which finds local minima in the objective func-
tion and not a global minimum, does not succeed in finding a
solution where both the internal structures of the lungs are well
registered and the surroundings of the lungs in this case. DIR-
LAB 7 and DIR-LAB 8 are typical cases which would benefit
if the algorithm modeled a sliding interface between lung and
lung cage. Further developments of ANACONDA involves the
implementation of site specific features such as sliding inter-
faces, e.g., the mentioned lung and the lung cage interface, as
well as other biomechanical properties. See, e.g., the initiatives
by Risser et al.47 and Delmon et al.48 Another improvement
is to implement mutual information as image similarity mea-
sure to deal with CT/MR DIR. Additional benchmarking by
participating in EMPIRE10 for thoracic 4DCT data,5 as well
as submitting results for the head and neck region initiative
described by Pukala et al.,49 is planned. Another aspect of DIR
validation is its accuracy in dose deformation where valida-
tions can be done using deformable gels.50,51 In this work, we
have focused on accuracy of image deformation but it is of

interest to investigate the performance on dose deformation in
the future.

ANACONDA in its present form (RayStation 4.5) is GPU
accelerated, thus facilitates fast contour propagation and can,
once validated for dose deformation, be used in online adap-
tive replanning.
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