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Abstract

Treatment planning for radiation therapy inherently involves tradeoffs, such
as between tumor control and normal tissue sparing, between time-efficiency
and dose quality, and between nominal plan quality and robustness. The pur-
pose of this thesis is to develop methods that can facilitate decision making
related to such tradeoffs. The main focus of the thesis is on multicriteria
optimization methods where a representative set of treatment plans are first
calculated and the most appropriate plan contained in this representation then
selected by the treatment planner through continuous interpolation between
the precalculated alternatives. These alternatives constitute a subset of the
set of Pareto optimal plans, meaning plans such that no criterion can be im-
proved without a sacrifice in another.

Approximation of Pareto optimal sets is first studied with respect to flu-
ence map optimization for intensity-modulated radiation therapy. The ap-
proximation error of a discrete representation is minimized by calculation of
points one at the time at the location where the distance between an inner and
outer approximation of the Pareto set currently attains its maximum. A tech-
nique for calculating this distance that is orders of magnitude more efficient
than the best previous method is presented. A generalization to distributed
computational environments is also proposed.

Approximation of Pareto optimal sets is also considered with respect to
direct machine parameter optimization. Optimization of this form is used
to calculate representations where any interpolated treatment plan is directly
deliverable. The fact that finite representations of Pareto optimal sets have
approximation errors with respect to Pareto optimality is addressed by a tech-
nique that removes these errors by a projection onto the exact Pareto set. Pro-
jections are also studied subject to constraints that prevent the dose-volume
histogram from deteriorating.

Multicriteria optimization is extended to treatment planning for volumetric-
modulated arc therapy and intensity-modulated proton therapy. Proton ther-
apy plans that are robust against geometric errors are calculated by optimiza-
tion of the worst case outcome. The theory for multicriteria optimization
is extended to accommodate this formulation. Worst case optimization is
shown to be preferable to a previous more conservative method that also pro-
tects against uncertainties which cannot be realized in practice.

Keywords: Optimization, multicriteria optimization, robust optimization,
Pareto optimality, Pareto surface approximation, Pareto surface navigation,
intensity-modulated radiation therapy, volumetric-modulated arc therapy, intensity-
modulated proton therapy.



vi

Sammanfattning

En viktig aspekt av planering av strålterapibehandlingar är avvägningar mel-
lan behandlingsmål vilka står i konflikt med varandra. Exempel på sådana
avvägningar är mellan tumörkontroll och dos till omkringliggande frisk väv-
nad, mellan behandlingstid och doskvalitet, och mellan nominell plankvalitet
och robusthet med avseende på geometriska fel. Denna avhandling syftar till
att utveckla metoder som kan underlätta beslutsfattande kring motstridiga
behandlingsmål. Primärt studeras en metod för flermålsoptimering där be-
handlingsplanen väljs genom kontinuerlig interpolation över ett representa-
tivt urval av förberäknade alternativ. De förberäknade behandlingsplanerna
utgör en delmängd av de Paretooptimala planerna, det vill säga de planer så-
dana att en förbättring enligt ett kriterium inte kan ske annat än genom en
försämring enligt ett annat.

Beräkning av en approximativ representation av mängden av Paretoop-
timala planer studeras först med avseende på fluensoptimering för inten-
sitetsmodulerad strålterapi. Felet för den approximativa representationen min-
imeras genom att innesluta mängden av Paretooptimala planer mellan inre
och yttre approximationer. Dessa approximationer förfinas iterativt genom att
varje ny plan genereras där avståndet mellan approximationerna för tillfället
är som störst. En teknik för att beräkna det maximala avståndet mellan ap-
proximationerna föreslås vilken är flera storleksordningar snabbare än den
bästa tidigare kända metoden. En generalisering till distribuerade beräkn-
ingsmiljöer föreslås även.

Approximation av mängden av Paretooptimala planer studeras även för
direkt maskinparameteroptimering, som används för att beräkna representa-
tioner där varje interpolerad behandlingsplan är direkt levererbar. Det faktum
att en ändlig representation av mängden av Paretooptimala lösningar har ett
approximationsfel till Paretooptimalitet hanteras via en metod där en inter-
polerad behandlingsplan projiceras på Paretomängden. Projektioner studeras
även under bivillkor som förhindrar att den interpolerade planens dos-volym
histogram kan försämras.

Flermålsoptimering utökas till planering av rotationsterapi och inten-
sitetsmodulerad protonterapi. Protonplaner som är robusta mot geometriska
fel beräknas genom optimering med avseende på det värsta möjliga utfallet
av de föreliggande osäkerheterna. Flermålsoptimering utökas även teoretiskt
till att innefatta denna formulering. Nyttan av värsta fallet-optimering jämfört
med tidigare mer konservativa metoder som även skyddar mot osäkerheter
som inte kan realiseras i praktiken demonstreras experimentellt.

Nyckelord: Optimering, flermålsoptimering, robust optimering, Paretoopti-
malitet, Paretofrontsapproximation, Paretofrontsnavigering, intensitetsmod-
ulerad strålterapi, rotationsterapi, intensitetsmodulerad protonterapi.
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Notation and terminology

The following mathematical notation and concepts are used in the introduction:

Sets

The absolute value of a finite set denotes its cardinality, and the absolute value of a
continuous subset of R3 its volume. The setwise sum S+S′ between two sets S, S′

denotes {x+ x′ : x ∈ S, x′ ∈ S′}. Setwise differences are defined analogously.
The sum between a singleton set {x} and a set S is denoted by x+ S. A set S is
said to be convex if for any x, x′ ∈ S and α ∈ [0, 1], it holds that

αx+ (1− α)x′ ∈ S.

A set S is called a cone if αx ∈ S for any x ∈ S and α ≥ 0. The convex hull of a
set of points {x1, . . . , xk} is the set{

k∑
i=1

αixi :

k∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , k

}
.

A closed halfspace {x : aTx ≥ b} defined by some nonzero vector a and a scalar
b is said to support a set S if

aTx ≥ b for all x ∈ S and aTx′ = b for some x′ ∈ S.

A set {x : Ax ≤ b} defined by some matrix A and vector b is called a polyhedron,
or a polyhedral set.

Functions

A semicolon is used to separate variables from parameters in the arguments of a
function. The composition f ◦ g of two functions f, g is defined as f(g(x)). The

xv



xvi NOTATION AND DEFINITIONS

image f(S) of a set S under a function f denotes {f(x) : x ∈ S}. A function f is
said to be convex on a convex set S if for any x, x′ ∈ S and α ∈ [0, 1], it holds that

f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′).

A function f is concave if −f is convex. A function f is called increasing if
x ≤ x′ implies that f(x) ≤ f(x′), called strictly increasing if x < x′ implies that
f(x) < f(x′), and called strongly decreasing if x ≤ x′ and x 6= x′ implies that
f(x′) < f(x). A function f is decreasing if −f is increasing, strictly decreasing
if −f is strictly increasing, and strongly decreasing if −f is strongly increasing.
The expectation of a function f that depends on a random variable ξ which takes
values from a set S is denoted by

Eπ[f(x; ξ)] =

∫
S
f(x; s)π(s) ds,

where π is the probability distribution of ξ over S.

Optimization problems

Minimization of a scalar-valued function f according to

minimize
x∈X

f(x)

is called a convex problem if f is a convex function and X a convex set. A point x
is feasible if x ∈ X , and optimal if x ∈ X and there exists no x′ ∈ X such that
f(x′) < f(x).



Introduction

Cancer is a leading cause of death worldwide. The mortality rates are particularly
high in the western world, where cancer has surpassed cardiovascular disease as
the most common cause of death for all but the very elderly (e.g., people younger
than 85 years in the US [121]). Many cancers are nevertheless curable. In fact,
the expected probability of five year survival after diagnosis is two in three for
cancer patients in both Sweden [96] and the US [4] if adjusted for the normal life
expectancy in the population. About half of the cancer patients in Sweden [80]
and nearly two-thirds of the cancer patients in the US [5] receive radiation therapy
during their illness.

This thesis focuses on the decision making during treatment planning for radi-
ation therapy. The forms of decisions that are addressed include:

• Whether to escalate dose in order to improve tumor control, or if to reduce
dose in order to avoid normal tissue toxicity

• Whether to protect against large geometric errors, or if to disregard unlikely
errors in order to benefit in plan quality with respect to a smaller set of un-
certainties

• Whether to sacrifice dose quality in order to shorten the delivery time and
thereby decrease the exposure to scatter irradiation and leakage that poses a
risk for radiation-induced second cancers

The current standard tools for radiation therapy treatment planning offer limited
control of these forms of tradeoffs. Clinical decisions are also often taken with
incomplete information because an overview of the possible treatment options is
in general not available. The purpose of this thesis is to develop methods that can
facilitate more structured and informed decision making during radiation therapy

1
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treatment planning. Improved clinical decisions are ultimately aimed to improve
patient care and to make better use of clinical resources.

The thesis is structured into an introductory chapter and six appended papers.
The introduction provides background to treatment planning for radiation therapy,
formulates the search for the best possible treatment plan as a mathematical opti-
mization problem, and discusses numerical methods to find its solution. The latter
part of the introduction poses the treatment planning problem as a multicriteria
optimization problem and introduces methods that are aimed to facilitate clinical
decision making. The introduction also contains a summary of the appended papers
and a discussion on the thesis’s main contributions.

1 Radiation therapy

Radiation therapy is a collective term for medical treatments where the patient is
exposed to ionizing radiation, the primary application of which is to treat malig-
nant disease. The main delivery techniques are external beam therapy, where the
patient is irradiated by external fields, and brachytherapy, where radioactive seeds
are placed within or in the immediate vicinity of the tumor. The purpose of the
treatment is generally to deliver a precise radiation dose to a confined target vol-
ume that encompasses the malignancy. The absorbed dose in surrounding tissues
should simultaneously be minimized in order to avoid damage to healthy organs.
Radiation therapy is administered both with the intention to cure and for palliative
care, where the goal is to reduce suffering caused by cancer. Cancers where cu-
rative treatments are common include tumors in the pelvis, head and neck, lung,
and central nervous system. Palliative radiation therapy can be administered for
indications such as painful bone metastases and tumors that cause pressure on the
spinal cord. Radiation therapy is also commonly used as a complementary treat-
ment for patients that undergo chemotherapy or surgery. Advantages of radiation
therapy include that the treatment is non-invasive, potentially organ preserving, and
that systemic side effects are generally avoided. Short-term adverse effects include
skin burn, fatigue, and sometimes nausea. The possible late side effects depend
on the irradiated body site; examples are memory loss, infertility, loss of saliva
production, joint problems, and secondary cancers.

1.1 Radiobiology

Ionizing radiation exhibit damage to the cellular DNA through two mechanisms of
action: by directly causing ionization events within the DNA, or by inducing the
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formation of free radicals that react with the DNA. Most of the radiation-induced
DNA lesions can be reversed by cellular repair mechanisms. The repair mecha-
nisms, however, fail with a small probability, which leads to permanent lesions
that render the cell unable to undergo cell division. The repair mechanisms of cells
in fast proliferating tissue such as tumors generally have an increased likelihood of
failure. It is therefore advantageous to partition the treatment into multiple frac-
tions. The treatment fractions are typically delivered with daily intervals, which is
a time-scale that permits the cells in normal tissue to recover from the effects of
the irradiation. Fractionated delivery also increases the probability that each tumor
cell at some point during the treatment is exposed to radiation when it is in a ra-
diosensitive state. The fraction dose and the number of fractions are determined
based on the estimated number of tumor cells and their radiosensitivity. A typical
fractionation schedule for 109 tumor cells with an expected cell kill of 50 % per
2 Gy fraction is 2 Gy × 30 fractions, which ensures that the expected number of
surviving tumor cells is less than one after the last fraction. It is important to note
that extinction of all tumor cells at the end of the treatment is often not necessary
for long-term survival without recurrence of the cancer: it may instead be sufficient
to eradicate the metastatic spread or bring the tumor into partial remission [142].
An extensive overview of radiobiology is contained in Hall and Giaccia [64].

1.2 Intensity-modulated external beam therapy

This thesis focuses on external beam radiation therapy with intensity-modulated
fields. External beam treatments constitute about nine-tenths of all radiation ther-
apy treatments [5]. The treatments with intensity-modulated fields are the most so-
phisticated of the external beam treatments, and also of increasingly more widespread
utilization. To exemplify, the fraction of external beam treatments for prostate can-
cer that in the US were delivered with intensity-modulated fields increased from
0.15 % to 95.9 % between 2000 and 2008 [112].

1.2.1 Treatment machines

The most common medical device for external beam radiation therapy is a linear
accelerator that accelerates electrons onto a primary target. The secondary photons
that are emitted as the electrons impinge on the target are transmitted through a
flattening filter, which produces a therapeutic field with (close to) uniform inten-
sity. The field shape is determined by a multileaf collimator (MLC). This device is
mounted perpendicular to the radiation field and is composed of pairwise opposing
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leaves that can move independently in and out of the treatment field in order to
block a fraction of the irradiation, see Figure 1. A given configuration of the MLC
leaves is called an aperture. The accelerator gantry can be rotated around the pa-
tient in order adjust the field incidence angle. The angle of the treatment couch can
also be adjusted to allow for non-coplanar fields. The accelerator contains an ion-
ization chamber that quantifies the radiation output in monitor units (MUs), which
are calibrated to a standardized radiation dose in water. Multileaf collimator-based
delivery techniques for photon therapy have been reviewed by Williams [133].

Figure 1. A photon field with field shape determined by tranmission through
an MLC.

A small fraction of the external beam treatments are delivered using a narrow
beam of accelerated ions that are extracted from a particle accelerator. A thera-
peutic field is obtained either by passive scattering, where the field is broadened
through a scattering foil, or by pencil beam scanning, where steering magnets are
used to scan the particle beam over the target volume. The energy of the inci-
dent protons can be adjusted by transmission through a range shifter of variable
thickness. A review of beam-delivery techniques for proton therapy is contained in
ICRU Report 78 [72].

1.2.2 Physical characteristics

The qualititative differences between proton and photon therapy dose distributions
can be understood from the depth-dose curves shown in Figure 2. The photon
depth-dose profile shows a short build-up region that is followed by a slow expo-
nential decay. These characteristics make external beam photon therapy best suited
for treatment of internal tumors. A relatively large number of overlapping fields
(∼5–9) is typically needed to differentiate the absorbed dose in the target volume
sufficiently from the absorbed dose in surrounding healthy structures. The depth-
dose curve for protons shows a relatively long entrance dose that is followed by a
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distinct maximum, which is called the Bragg peak. The distal position of the Bragg
peak is a function of the proton energy and the density of the traversed medium.
The absorbed dose rapidly falls to zero beyond the Bragg peak. A uniform proton
dose can be delivered to a spatially extended volume by the superposition of multi-
ple Bragg peaks associated with different energies. The low entrance dose and the
lack of exit dose implies that a small number of fields (∼1–3) is often sufficient for
proton therapy.
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Figure 2. Depth-dose profiles along the central axis for a broad beam of
6 MV photons and 135–200 MeV protons. The superposition of appropri-
ately modulated monoenergetic Bragg peaks produces a spread-out Bragg
peak.

1.2.3 Delivery techniques

The term intensity-modulated radiation therapy (IMRT) is in this thesis reserved
for photon therapy delivered as a set of static beams with modulated intensity1.
Modulated beam profiles are generated by movements of the MLC, and the ac-
celerator gantry rotated with the field switched off in-between the delivery of one
beam to the next. Intensity-modulated radiation therapy is an extension of three-
dimensional conformal radiation therapy (3DCRT): an earlier delivery technique
that uses similar hardware but only a single static aperture per beam. The devel-
opment of external beam photon therapy from 3DCRT to IMRT has reviewed by
Bucci et al. [21].

1The term “intensity-modulated” is strictly speaking an abuse of terminology because the field
intensity is uniform at any instant in time while the intensity integrated over time (fluence) is modu-
lated.
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There are two main modes of MLC movements that are used achieve intensity
modulation: The first method, called step-and-shoot or segmented MLC (SMLC),
partitions each beam into a set of segments that are delivered consecutively. Each
segment is defined by a static aperture and a fraction of the beam MU, which is
called the segment weight. The beam is switched off as the MLC leaves are repo-
sitioned before delivery of the next segment. The second method, called dynamic
MLC (DMLC), uses continuous leaf movement during irradiation. Treatment de-
livery where the leaves move in unidirectional sweeps back and forth over the beam
planes is called sliding window. The leaves can either move in synchronized fash-
ion in order to minimize interleaf transmission or in non-synchronized fashion in
order to minimize beam-on time. Intensity-modulated radiation therapy has been
extensively reviewed, see, e.g., Ahnesjö et al. [1] and Bortfeld [16].

Figure 3. Delivery of an IMRT treatment: The superposition of multiple
collimated fields with uniform intensity produces a modulated intensity pro-
file. The depicted treatment plan is designed to deliver a high radiation dose
to a tumor located in the nasopharyngeal region and an intermediate dose to
surrounding lymphoid tissue.

Volumetric-modulated arc therapy (VMAT) is an extension of IMRT where
the gantry rotates continuously during irradiation. Another characteristic prop-
erty is that the dose rate (the number of MUs delivered per unit of time) and the
gantry speed can vary during irradiation in order to allow for modulation in MU
as function of gantry angle. These degrees of freedom distinguish VMAT from
intensity-modulated arc therapy (IMAT): an earlier delivery technique that is lim-
ited to constant dose rate and gantry speed2. A VMAT treatment can often be de-

2The naming conventions for IMAT and VMAT are not consistent in the literature. The defini-
tions given here are in accordance with Webb and McQuaid [131].
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livered within a single gantry rotation thanks to its ability to slow down the gantry
rotation and increase the dose rate over gantry angle intervals where a high de-
gree of intensity modulation is needed, and the ability to increase the gantry speed
and decrease the dose rate over angle intervals where sensitive structures block the
field’s line of sight. Intensity modulation is mainly achieved using DMLC, but
SMLC-like delivery where the irradiation is delivered in high dose-rate burst only
when the apertures have been completely formed has also been demonstrated [108].
Volumetric-modulated arc therapy has been reviewed by Yu and Tang [141].

Figure 4. Delivery of a VMAT treatment: The accelerator gantry and the
MLC leaves both move continuously during irradiation. The circular his-
togram depicts the planned number of MUs as a function of gantry angle.

Intensity-modulated proton therapy (IMPT) refers to actively scanned proton
therapy where all fields are planned simultaneously. A general IMPT plan is there-
fore composed of several non-uniform fields that together produce an overall uni-
form target dose. This delivery technique can be contrasted to single field uniform
dose where each beam is planned towards delivery of a uniform dose to the target
independent of the other fields. An actively scanned proton beam is represented by
a number of spots. Each spot is defined by a point in the beam coordinate system
and a given particle energy. The fraction of the beam MU that is associated with a
given spot is called the spot weight. A therapeutic field with modulated intensity
is achieved by varying the spot weights. Intensity-modulated proton therapy has
been reviewed by Lomax [83].
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Figure 5. Delivery of an IMPT treatment: The two-dimensional histograms
in the beam planes depict the spot weight distribution for a single energy
layer.

1.2.4 Clinical benefit

Extensive data show that IMRT is better suited for delivery of concave dose dis-
tributions and dose distributions with steep dose gradients than 3DCRT, see, e.g.,
Purdy [100] and references therein. The improved dose-shaping capabilities of
IMRT can be exploited to better spare normal tissue or to escalate dose—and
thereby improve local control—in the vicinity of structures that would otherwise
be dose-limiting. Comparative trials have shown that IMRT allows safe dose es-
calation and results in reduced acute and late normal tissue toxicities, see, e.g.,
Veldeman et al. [126] and Staffurth [115] for reviews and references to the orig-
inal literature. Despite the benefits of IMRT, there are also some disadvantages.
Treatment delivery times for IMRT are generally longer than for 3DCRT, which
increases the susceptibility to geometric errors. The absorbed dose outside the
fields due to leakage and scatter radiation is also higher for IMRT than for 3DCRT
because delivery of IMRT requires two to three times more MUs [65]. Nearly twice
as many (1.75 % compared to 1 %) patients are therefore estimated to develop sec-
ond malignancies within a ten-year period after treatment with IMRT than after
treatment with 3DCRT [65]. The advantages and disadvantages of IMRT are both
more pronounced for DMLC than for SMLC because DMLC is a comparatively
more complex delivery technique that has greater intensity-modulating capabili-
ties, at least in theory. For a discussion on the merits of DMLC and SMLC, see
Xia et al. [138].
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Volumetric-modulated arc therapy has been extensively compared to IMRT.
Most of the conducted planning studies are, however, with respect to dosimetric
differences, and the data on clinical outcome is therefore limited. In a review of
the current literature, Teoh et al. [119] found that VMAT and IMRT are largely
equivalent with respect to target coverage, target homogeneity, and dose confor-
mity with respect to several tumor sites. The significant differences between IMRT
and VMAT, according to this review, are that VMAT permits shorter delivery times
(about 1–3 minutes compared to 5–15 minutes), that it reduces the total number of
MUs, but increases the normal tissue volume that receives low dose radiation.

The physical properties of protons permit proton therapy dose distributions to
conform more closely to the target volume than those produced by photon ther-
apy [86]. Proton therapy therefore generally leads to a reduction in dose to healthy
structures outside the target volume by a factor two to three compared to pho-
tons [61]. This dose reduction makes proton therapy likely to decrease the risk for
second cancers [140]; a property that makes proton therapy particularly interesting
for treatment of pediatric tumors. An advantage of pencil beam scanning compared
to passive scattering is that dose from secondary neutrons that are produced in the
scattering foil is avoided [63]. Clinical trials are currently being conducted, but as
of April 2013, there is yet very little data available which shows that proton therapy
improves clinical outcome compared to photon therapy [93].

2 Treatment planning

The main parameters that need to be determined during treatment planning for
intensity-modulated external beam therapy is the number of radiation fields, their
orientation, and the intensity modulation of each field. These parameters are most
commonly selected both according to the treatment planner’s judgment (called for-
ward planning) and using computerized automated selection (called inverse plan-
ning). Forward planning is the most common technique for selection of the number
of treatment fields and their orientation, while inverse planning is the only practical
method to determine the shape of the intensity profiles.

2.1 Imaging modalities and planning structures

The primary imaging modality for radiation therapy planning is computed tomog-
raphy (CT), which produces cross-sectional x-ray slices that can be processed into
a three-dimensional volume image of the patient volume. Computed tomography
can be supplemented by additional functional imaging such as positron emission
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tomography or magnetic resonance imaging, which are useful for visualization and
staging of regions of pathological tissue.

The CT slices are augmented with contours that specify the location of regions
of interest (ROIs), such as the target volumes and the organs at risk (OARs). The
extent of the known macroscopic disease is indicated as the gross tumor volume,
and the superset of this volume that also contains regions of suspected microscopic
disease indicated as the clinical target volume (CTV). The planning structures are
traditionally delineated by a clinician, but tools that use anatomical atlases for au-
tomated segmentation are also becoming available. Details on the delineation of
anatomical structures are contained in ICRU Report 62 [71].

2.2 Geometric uncertainties

Radiation therapy is affected by a multitude of errors that can compromise a suc-
cessful treatment unless they are appropriately accounted for. Systematic errors oc-
cur during treatment preparation and include errors in the delineation of the ROIs,
patient misalignment during image acquisition, and image artifacts due to, e.g.,
noise, scanner imperfections, and metal implants in the patient’s body. Random
errors occur during the treatment’s execution. These errors include daily setup
error, inter- and intrafractional organ motion, and anatomic changes induced by
tumor shrinkage or weight loss. A systematic error generally results in a shift of
the planned dose distribution whereas the accumulated effect of random errors is a
blurred total dose (high doses are reduced and lower doses increased). Uncertain-
ties in external beam photon therapy has been reviewed by Van Herk [125], while
uncertainties in proton therapy has been reviewed by Lomax [84, 85].

Geometric errors can be mitigated by patient immobilization and positioning
according to bony structures or fiducial marker implants (e.g., gold seeds) [12,76],
but not removed entirely. The current recommendation by the International Com-
mission on Radiation Units and Measurements (ICRU) for both photon [73] and
proton [72] therapy planning is therefore to expand the CTV into a planning tar-
get volume (PTV), with the size of the CTV-PTV margin selected so that a certain
coverage probability is achieved according to the population distribution of the sys-
tematic and random errors. The ICRU also recommends that geometric margins are
used for OARs, in particular for structures where a high dose to a small subvolume
is sufficient to cause complication.
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2.3 Plan evalation criteria

The primary evaluation criteria for assessment of treatment plan quality are dose-
volume indices according to:

• Dose-at-volume Dx: the highest dose such that at least x % of a given ROI
receives this dose or higher

• Volume-at-dose Vx: the fraction of the volume of a given ROI that receives
a dose of x Gy or higher

Assessment of plan quality with respect to dose-volume statistics is supported by
the fact that the current evidence-based knowledge about the outcomes from radi-
ation therapy is mainly with respect to such data [53, 88].

Dose-volume indices constitute points in the (cumulative) dose-volume his-
togram (DVH): a graph that depicts cumulative volume as function of dose for a
given ROI, see Figure 6. Such graphs are a standard tool for plan quality assess-
ments because they allow for instantaneous visual inspection of the dose-volume
effects in all relevant structures.
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Figure 6. Examples of DVH curves and dose-volume levels for a target
structure (red) and an OAR (blue).

Two complementary evaluation criteria are the homogeneity index (HI) [73]
and the conformity index (CI) [71], which are defined according to

HI =
D2 − D98

D50
and CI =

treated volume
target volume

,
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where the treated volume is the volume enclosed by the isodose surface defined at
95 % of the prescription. The homogeneity index measures the dose uniformity
within a target volume and has an ideal value of zero. This index is defined with
respect to the near minimum and maximum dose (D98 and D2) instead of the ex-
act minimum and maximum because the exact values are susceptible to numerical
outliers in the dose distribution data. The conformity index measures how closely
the high dose region conforms to the target volume and has an ideal value of one.
Appropriate use of this index requires that the treated volume entirely encompasses
the target volume.

Another plan evaluation criterion is the tumor control probability (TCP), which
quantifies the probability that the number of surviving clonogenic tumor cells is
zero at the end of the treatment. This probability is calculated from an analytical
model of the tumor’s response to irradiation. A common assumption is that the
survival fraction (SF) of cells exposed to the radiation dose d is described by a
linear-quadratic model according to

SF = e−αd−βd
2
, (1)

where α and β biological model parameters that are fitted to empirical data [56].
A related biological evaluation criterion is the normal tissue complication prob-
ability, which quantifies the probability that some clinical endpoint occurs. The
ICRU recommends that biological evaluation criteria are used with caution due to
uncertainty in the model parameters [73].

Physical and biological criteria for evaluation of radiation therapy treatment
plans have been reviewed by Romeijn and Dempsey [104].

3 Treatment plan optimization

3.1 Problem formulation

Early work on treatment planning for IMRT [18,33,34] considered treatment plan-
ning as an inverse problem where the desired dose distribution is known (the pre-
scription to all targets and zero dose elsewhere) and the fluence distribution that
produces this dose the unknown. The fluence distribution that best realizes the
desired dose was then found by analytical inversion. An issue, however, is that
the energy fluence can and do become negative at the solution. Direct inversion
has therefore been largely abandoned in contemporary treatment planning in favor
of numerical optimization techniques. The patient geometry is for optimization
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purposes discretized into volume elements called voxels, and the beam planes dis-
cretized into surface elements called bixels.

Inverse planning for radiation therapy is in this thesis posed as a mathematical
optimization problem by the introduction of n objectives f1, . . . , fn that are to
be minimized with respect to some variables x. The objectives are aggregated
into a single scalar-valued measure by the introduction of nonnegative weights
w1, . . . , wn, which are chosen in order to reflect the relative importance of the
objectives. Planning aims that must be entirely fulfilled are posed as constraints
c1, . . . , cm that are required to evaluate to zero or less. The vector x is required to
be contained in a set {x : Ax ≤ b} defined by some matrix A and vector b, which
corresponds to the parameter values which can be physically realized. The inverse
planning problem is thus formulated

minimize
x

n∑
i=1

wifi(x) (composite objective function)

subject to cj(x) ≤ 0, j = 1, . . . ,m, (planning constraints)
Ax ≤ b. (physical constraints)

(2)

Minimization is considered without loss of generality because maximization of
some objective f can be equivalently posed as minimization of −f .

The variables x are in this thesis limited to the parameters that determine the
intensity modulation of the radiation fields. The treatment planning problem is
furthermore assumed to be solved only once and the optimized treatment plan then
kept identical during all treatment fractions. Beam orientation optimization and
adaptive replanning are both active areas of research, but not within the scope of
this thesis.

3.2 Optimization functions

The objectives functions and the planning constraints are in practice chosen in
order to reflect the evaluation criteria that are used to judge plan acceptability.
Three forms of physical optimization functions are studied in this thesis, namely
purely dose-based functions, functions of the equivalent uniform dose (EUD), and
functions of the DVH. Biological optimization is also considered with respect to
maximization of TCP. More comprehensive reviews of optimization functions for
radiation therapy treatment planning are available in Romeijn [105] and Hoffmann
et al. [67].
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3.2.1 Mathematical formulation

All optimization functions f are for clarity stated with the dose distribution d as the
argument and the underlying dependence on x omitted, i.e., f(d) = f(d(x)). All
criteria are also defined with respect to a single ROI and the subset of the patient
volume associated with this ROI denoted by V . The physical criteria are stated
on two variants using a linear ramp Θ that is given either by Θ(y) = min{y, 0} or
Θ(y) = max{y, 0}. The choice of ramp function is indicated by the prefix “min”
or “max.”

Good optimization functions should not only accurately model the clinical
goals, but also be differentiable and convex in order to be suitable for optimiza-
tion. Convexity can often be verified by expressing a function as the composition
h ◦ g of two functions h, g where either of any of these three conditions hold [17]:

• h is increasing and convex and g convex

• h is decreasing and convex and g concave

• h is convex and g linear

Two properties that will be referenced later are that the function min{y, 0}2 is
convex and decreasing and the function max{y, 0}2 convex and increasing.

A dose function imposes a penalty on deviation between the dose distribution
d and a reference dose level d̂ according to

f(d) =

∫
V

Θ(d(v)− d̂)2 dv, (3)

where d(v) denotes the dose at a point v in V . The direct sum between a min dose
function and a max dose function that have identical reference dose level is called
a uniform dose function. Uniform dose functions are infinitely many times con-
tinuously differentiable, and min and max dose functions one time continuously
differentiable. The integrand of a dose-based function are a composition of a con-
vex function (the squared ramp) and a linear function (its argument) and therefore
convex. The integral in (3) preserves convexity, and dose-based functions are hence
convex.

An EUD function is obtained if a uniform dose with equivalent biological ef-
fect is substituted for d in (3). The EUD is in this thesis calculated according the
generalized mean

EUDa(d) =

(∫
V
d(v)a dv

)1/a

,
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for some a 6= 0. This quantity, which is originally due to Niemierko [97], permits
continuous scaling between the minimum dose (a→ −∞) and the maximum dose
(a→∞). Noteworthy special cases are the harmonic mean (a = −1), the geomet-
ric mean (a→ 0), and the arithmetic mean (a = 1). The EUD level is convex if
a ≥ 1 and concave if 0 6= a ≤ 1 [29]. Min EUD functions are therefore a composi-
tion of a convex and decreasing function and a concave function and hence convex
if 0 6= a ≤ 1. Max EUD functions are a composition of a convex and increasing
function and a convex function and hence convex if a ≥ 1. Min EUD and max
EUD functions are both one time continuously differentiable.

A DVH function imposes a penalty on deviation between the DVH curve asso-
ciated with a given subvolume V and the reference dose level d̂ according to

f(d) =

∫
I

Θ(D(v; d)− d̂)2 dv,

where I = (0, v̂] for min DVH and I = (v̂, 1] for max DVH, for some reference
volume v̂ in (0, 1], and where D is a function that takes cumulative volumes to
dose-at-volume levels according to

D(v; d) = max

{
d′ ∈ R :

|{v′ ∈ V : d(v′) ≥ d′}|
|V | ≥ v

}
.

Dose-volume histograms functions are nonconvex [48] and nonsmooth.
A TCP function quantifies the probability that the number of clonogenic tumor

cells is zero after the last treatment fraction. The TCP model used in this thesis
assumes that the cell kill follows Poisson statistics and does not take repopulation
into account. Let the discrete random variable N denote the number of clonogenic
tumor cells at the end of treatment. Then, the probability that N equals some
integer k is given by the Poisson probability mass function according to

P(N = k) =
E[N ]ke−E[N ]

k!
,

which together with (1) yields an expression for the TCP according to

TCP(d) = P(N = 0) = e
−

∫
V
ρ(v)e

−αd(v)−β d(v)
2

nf dv
, (4)

where ρ(v) is the density of clonogenic tumor cells at a point v in V and nf the
number of treatment fractions. Maximization of TCP according to (4) is convex
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under a logarithmic transformation provided that the dose distribution satisfies [67]

d(v) >

√
nf
2β
− αnf

2β
, v ∈ V.

Maximization of TCP is studied in Paper F.

3.2.2 Practical use

Optimization with respect to uniform dose functions with reference dose level set
to the prescription for targets and to zero otherwise gives the least-squares solution
to the inverse problem of radiation therapy. The calculation of this solution has
mathematically favorable properties, but generally results in an unacceptable un-
derdosage of the target volume [15]. A common remedy for the underdosage is to
use max dose functions for OARs that have the reference dose level increased from
zero to a positive threshold that is chosen sufficiently small to avoid complication.
Dose-based functions are used in all of the appended papers.

It is also common to augment the formulation of the treatment planning prob-
lem with DVH functions, because clinicians have extensive experience with DVH
criteria and are aware of how they affect outcome. Max DVH functions are useful
for OARs that exhibit a large volume effect, such as the lung or liver, where it is
acceptable to deliver a high dose to a subvolume of the organ as long as this subvol-
ume is relatively small. Min DVH functions can be useful if the PTV overlaps with
a dose-limiting OAR, where it can permit a controlled underdosage of a subvolume
of the PTV. Dose-volume histogram functions are used in Papers B and C.

Structures that exhibit a large volume effect can also be modeled using EUD
functions, which have better numerical properties than functions based on the
DVH. The parameter a is for EUD functions chosen in order to reflect tissue archi-
tecture. Negative values are used for targets, while small positive values are used
for OARs where damage to a single functional subunit causes loss of function (se-
rial organs, e.g., the spinal cord and esophagus). Larger positive values are used
for OARs where loss of function only occurs after damage to a considerable frac-
tion of the functional subunits (parallel organs, e.g., the lung and parotid glands).
Equivalent uniform dose functions are used in Papers B and C.

A natural extension of (3) is to make d̂ a function of the spatial position v, or to
introduce a spatially variable weight in the integrand. A variable reference dose is
useful for dose-painting: a technique where tumorous regions with increased cell
density or higher radioresistance are identified using functional imaging, and then
prescribed with a higher dose [11]. Another application of a variable reference dose
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is dose fall-off functions, where the reference level decreases with distance from the
nearest target structure in order to prevent hot spots that are remotely located from
targets. Dose fall-off functions are used in Papers B and C. A spatially variable
weight has been suggested in order to incorporate the coverage probabilities of the
CTV directly in the optimization (in contrast to margins created with respect to
such probabilities), see, e.g., Bohoslavsky et al. [13] and references therein. Voxel-
specific weights are also used in several methods for fine-tuning of the current dose
distribution that are discussed in Section 4.7.

There is considerable debate on whether the nonconvexity of DVH functions
leads to local minima or not. Some authors report that if the number of variables
are large, then the local minimizers are sufficiently close to the global minimiz-
ers for the search after global minimizers to become inconsequential [75, 82, 136].
Other authors report that some local minimizers differ considerably from the global
minimizer [135]. Approximate DVH criteria with better numerical properties have
nevertheless been suggested: Romeijn et al. [103] observed that a min DVH crite-
ria corresponds to optimization of the minimum dose in the 1 − v̂ fraction of the
volume receiving the highest dose (the value-at-risk), and thereby proposed to op-
timize the average dose received by this subvolume (the conditional value-at-risk),
which is a convex measure. Analogous convex approximations are also possible for
max DVH criteria. Zinchenko et al. [147] showed that a DVH curve is determined
uniquely by an infinite sequence of EUD criteria [147], and proposed to approxi-
mate DVH criteria by minimization of a sequence of EUD functions applied to the
difference between the current dose and a reference dose that satisfies the criterion.
Halabi et al. [62] formulated DVH criteria using integer variables and then solved
the linear relaxation of the resulting mixed-integer program. A large number of
heuristics have also been used to account for DVH criteria during optimization,
see, e.g., Lan et al. [78] and Zarepisheh et al. [143] for recent summaries of the
relevant literature.

3.3 Treatment plan optimization methods

The two main methods for photon therapy optimization is to either consider the
energy fluence per bixel as directly controllable variables or to incorporate the
underlying dependence on the physical parameters in the optimization. The former
approach is called fluence map optimization (FMO) and the latter called direct
machine parameter optimization (DMPO). Treatment plan optimization for IMPT
is performed with the spot weights as variables, which has equivalent mathematical
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properties with FMO. Fluence map optimization is used in all of the appended
papers while DMPO is used in Papers B, C, and E.

3.3.1 Fluence map optimization

A clear advantage of FMO is that the relationship between fluence and dose is lin-
ear. This property makes FMO problems convex whenever the objectives and the
planning constraints are convex in dose because composition with a linear function
preserves convexity. Convex programs can be solved efficiently to global optimal-
ity because every local minimizer is also a global minimizer. An FMO problem
is generally less computationally expensive to solve than a general linearly con-
strained problem of the same size because the only physical constraint in FMO is
a bound that prevents negative fluence.

A proton therapy plan generated by spot weight optimization is directly de-
liverable by pencil beam scanning whereas a photon therapy plan optimized by
FMO requires conversion by leaf-sequencing into deliverable apertures. A survey
on leaf-sequencing methods is contained in Ehrgott et al. [50]. Two important re-
sults are that leaf-sequencing which minimizes MU can be solved in polynomial
time [2, Theorem 1] whereas leaf-sequencing that minimizes the number of aper-
tures is strongly NP-hard [6, Theorem 4.1], meaning there is no algorithm that can
find the optimal solution within a polynomial bound on the running time (unless
P = NP).

Leaf-sequencing causes a degradation of dose quality, in particular for irradia-
tion of complex target geometries. This degradation is partially due to the fact that
an optimal fluence profile often is highly jagged and therefore difficult to decom-
pose into a finite number of apertures. Jaggedness can be counteracted by inclusion
of a stabilizing penalty on variation in the fluence planes in the objective function
of (2). Several authors have proposed quadratic variational penalties [31, 89, 114],
which promote smooth fluence profiles. Total variation penalties, which penalize
linear variation, have later been shown to promote piecewise constant fluence maps
that are better suited for leaf-sequencing [145, 146]. Total variation regularization
is utilized in Papers B and D. Variational penalties on fluence are convex and do
therefore not interfere with the convexity properties of FMO. Other regularization
methods include upper bounds on the admissible fluence [35] and iterative regular-
ization [24], where the optimization is terminated after a relatively small number
of iterations.
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3.3.2 Direct machine parameter optimization

Direct machine parameter optimization methods consider the leaf positions and the
segment weights as variables during optimization (and possibly also other parame-
ters such as the gantry, couch, and collimator angles). The physical constraints are
posed on a form that reflects limitations on the apertures, such as interdigitation,
connectedness, bounds on the minimum leaf tip gap, bounds on the minimum aper-
ture area, and bounds on the minimum segment weight. Variables that determine
the gantry speed and the dose rate are also included during VMAT optimization.

It is considerably more difficult to solve a DMPO problem than its FMO coun-
terpart. This difficulty arises because the relation between leaf positions and flu-
ence is both nonlinear and nonconvex. Background and illustration of this non-
convexity is provided in Figure 7. Direct machine parameter optimization thus
amounts to nonconvex optimization regardless of the convexity of its FMO coun-
terpart. A large number of optimization methods have been proposed in order the
tackle DMPO, including the following:

• Simulated annealing methods [47,98,113], which introduce random changes
to the variables and retain feasible changes that improve the objective func-
tion value. The algorithm also retains solutions with worse objective values
with some probability in order to permit escape from local minima.

• Column generation methods [90, 102], which alternate between a subprob-
lem where the new aperture that maximizes the improvement in objective
function value is identified and a master problem where the segment weights
of the apertures generated so far are optimized.

• Gradient-based methods [22, 66], which consider the leaf positions and seg-
ment weights as variables simultaneously. The referenced methods use a
treatment plan generated by FMO and leaf-sequencing as the initial point,
and then use first order derivative information and approximate second order
derivative information to improve the solution.

• Genetic algorithms [37, 79], which attempt to mimic the process of natural
evolution by maintaining a population of solutions where the fittest individ-
uals are randomly recombined in order to evolve the population.

• Heuristic methods, which are based on deterministic rules for the admissible
configurations of the leaves [9, 47], or similar rules that are defined over the
course of the algorithm’s execution (tabu-search) [122].
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Methods that combine column generation and gradient-based search have also been
proposed [23, 26]. Gradient-based optimization methods for DMPO are used in
Papers B, C, and E.
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Figure 7. Relation between leaf positions (x, y) and energy fluence ψ for
a two-leaf MLC that blocks a single Gaussian-shaped fluence source with
standard deviation σ. (a) The fluence ψ(t) at a point t in the fluence plane is
determined by integration over the visible parts of the fluence source, which
gives an expression defined by sigmoidal error functions [55]. (b) Fluence
at t = 0 as a function of x and y. The leaf positions are constrained to
x+ y ≤ 20 in order to avoid collision. The inset depicts the trace along
the white line segment parameterized by α ∈ [0, 1], and illustrates that
ψ(0)(x, y) is jointly non-convex in x and y.

Direct machine parameter optimization has been shown to both reduce the
number of apertures and the number of MUs, and simultaneously provide dose
distributions of comparable or improved quality to those generated by FMO and
leaf-sequencing, see Broderick et al. [20] for a review and references to the origi-
nal literature.

4 Multicriteria optimization

4.1 Motivation

The treatment planner’s task to find values for the objective weights that condense
all clinical requirements into a single number is clearly not trivial. Complicating
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issues are that the weights lack a direct clinical interpretation, and that they are
chosen without knowledge about how realistic the objectives are to fulfill. It is also
in general not known how the objectives are correlated and therefore hard to know
how to change the weights in order to introduce a desired modification to the dose
distribution. The lack of overview of the possible treatment options also makes
it is difficult to know when to terminate the search for better treatment plans. A
further difficulty is that the optimized plan often is very sensitive to the choice of
weights [70,130], and tumor-site specific protocols therefore of limited usefulness.
It is common to counteract this sensitivity by a relaxation of the planning criteria
into requirements that are easier to attain. Such relaxation, however, poses the risk
that the requirements become too weak and the optimized treatment plan therefore
suboptimal to the initial formulation with sharp criteria.

The problems associated with weights contribute to the fact that treatment plan-
ning often is a time-consuming process that involves a considerable amount of
manual parameter tuning. Multiple studies have found that treatment plan quality
is strongly dependent on both the time-commitment and the experience level of the
individual treatment planner [7, 14, 30].

4.2 Multicriteria formulation

The main focus of this thesis is on a generalization of the treatment planning
problem to a multicriteria optimization problem where the objectives are viewed
as components of a vector-valued function and explicit weight factors thereby
avoided. The multicriteria counterpart of problem (2) is given by

minimize
x

[
f1(x) · · · fn(x)

]T
subject to cj(x) ≤ 0, j = 1, . . . ,m,

Ax ≤ b.
(5)

The notation f is subsequently used to denote the vector of objective function, and
the feasible set of (5) denoted by X . The interesting situation occurs when the
feasible set is nonempty and no feasible solution exists at which each objective fi,
i = 1, . . . , n, attains its minimum value over X simultaneously. This situation
makes (5) a decision problem in the sense that the subjective preferences of some
decision maker must be taken into account in order for the minimizer to be math-
ematically well-defined. In practice, the decision maker is the single person that
is responsible for the approval of the clinical plan (or a similar group of persons).
Decision-making aspects of radiation therapy treatment planning are discussed in
the review by Moore et al. [95].
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The dependence on a decision maker’s preferences is more explicitly shown in
an alternative formulation of problem (5) according to

maximize
x∈X

u(f(x)) (6)

where u : Rn → R is a utility function such that the decision maker prefers a feasi-
ble x to feasible x′ if u(f(x)) > u(f(x′)) and is indifferent if u(f(x)) = u(f(x′)).
A closed-form expression of the decision maker’s utility is not available in practice.
Multicriteria optimization can therefore equivalently be viewed as optimization un-
der uncertainty in the decision maker’s preferences.

Multicriteria optimization methods are in this thesis classified according to the
decision maker’s participation. The considered classes are summarized below (the
classification is adapted from Miettinen [92]):

• A priori methods, where the decision maker articulates preferences between
the objectives before the optimization

• A posteriori methods, where an unbiased approximation of all Pareto optimal
solutions is first calculated and the best available alternative then selected by
the decision maker

• No preference methods, which do not involve an active decision maker

• Interactive methods, where the decision maker gradually articulates prefer-
ences during the solution process

This thesis mainly focuses on a posteriori methods, which are considered in all of
the appended papers. The studied a posteriori methods use an a priori method as
a subroutine to generate representations of the Pareto set. An interactive method
is studied in Paper B. No preference methods and previous interactive methods are
reviewed for completeness. Comprehensive reviews of multicriteria optimization
methods are contained in the monographs by Miettinen [92] and Ehrgott [49].

4.3 Pareto optimality

The most common definition of optimality with respect to a vector-valued opti-
mization problem is that a feasible solution is optimal if there exist no other fea-
sible solution that is at least as good in all objectives, and strictly better in at least
one objective. Solutions that satisfy this nondominance criterion are called Pareto
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optimal. A more formal definition is that a feasible solution x∗ is Pareto optimal if
there exists no feasible x such that

fi(x) ≤ fi(x∗) for all i = 1, . . . , n and fj(x) < fj(x
∗) for some j.

An equivalent statement is that a feasible x∗ is Pareto optimal if there is no feasible
x such that

f(x) ∈ f(x∗)− (Rn+ \ {0}). (7)

This relation is illustrated in Figure 8(a), which also depicts the feasible objective
spaceZ = f(X), the dominated objective spaceZ+ = Z + Rn+, the ideal point zid

and the nadir point znad. The ideal point is the n-vector where the ith component
is given by the minimal value of fi over the Pareto optimal set, and the nadir point
the corresponding vector defined with respect to maximization. The ideal and nadir
points are in all of the appended papers used for normalization of the objective
function to comparable magnitudes according to

fi ←[
fi − zid

i

znad
i − zid

i

, i = 1, . . . , n,

where it is assumed that zid
i < znad

i holds for i = 1, . . . , n. The depicted situation
where the Pareto optimal set forms a convex surface in Rn—meaning a connected
surface in the boundary of a convex set—in general only occurs for convex prob-
lems [105, Proposition 2.3].

Pareto optimality is a necessary condition for optimality with respect to max-
imization of utility according to (6) if the decision maker’s preferences are ratio-
nal [92, Theorem 2.6.2], meaning that smaller objective values are always preferred
to larger ones, or equivalently, that the utility function is strongly decreasing. The
connection between Pareto optimality and maximization of utility is illustrated in
Figure 8(b): the optimum to problem (6) occurs where the partial derivatives of
the Pareto optimal set (the marginal rates of transformation) equals the negative of
the partial derivatives of the utility function (the marginal rates of substitution), if
these partial derivatives exist.

4.4 A priori methods

A priori methods attempt to translate the decision maker’s preferences into a scalar-
valued function that is amenable to optimization. Such methods are therefore often
synonymously called scalarization methods.
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Figure 8. (a) Principle of Pareto optimality: The set Z is indicated in dark
gray, the set Z+ indicated in light gray, and the Pareto optimal set indicated
by a thick solid line. The ideal and nadir points are indicated in white.
The feasible solution x∗ is Pareto optimal because no Pareto optimal point
is contained in f(x∗)− (Rn+ \ {0}). (b) The Pareto optimal solution x∗ is
optimal to maximization of a strongly decreasing utility function u. The
dashed lines indicate indifference curves with respect to u. The linearization
of u equals the linearization of the Pareto optimal set at f(x∗).

The method of weighted sum minimization introduced in Section 3 is an a pri-
ori method where the marginal rates of substitution are specified explicitly, and
these rates assumed to everywhere constant, see Figure 9(a). The n-vector of ob-
jective weights w thus specifies an inwards oriented normal vector to the feasible
objective space Z at the optimum. The optimal solution to weighted sum mini-
mization with respect to positive weights is Pareto optimal [92, Theorem 3.1.2].
Optimality to weighted sum minimization for some nonnegative weights is also
a necessary condition for Pareto optimality if the optimization problem is con-
vex [92, Theorem 3.1.4], meaning that all Pareto optimal solutions to a convex
problem can be obtained by weighted sum minimization.

The ε-constraint method is another common a priori method. The decision
maker here specifies upper bounds εi, i = 1, . . . , n, i 6= `, for all but one objective,
indexed by `, which is minimized. The ε-constraint method constitutes the basic
operation for lexicographic ordering, a technique where the objectives are first hi-
erarchically ordered and then optimized consecutively subject to the constraint that
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all previously optimized objectives must not deteriorate. Lexicographic optimality
is a sufficient condition for Pareto optimality [92, Theorem 4.2.1].

The ε-constraint method is a special case of a more general method of reference
point-based optimization according to

minimize
x,t

t

subject to fi(x)− tpi ≤ z̄i, i = 1, . . . , n,
x ∈ X,

where z̄ is a reference point and p a nonnegative directional vector, both in Rn.
This form of optimization corresponds to an assumption on that the marginal rates
of substitution are vanishing around a point on the line {z̄ + tp : t ∈ R}, as il-
lustrated in Figure 9(b). The ε-constraint method is obtained if εi is set to z̄i for
i = 1, . . . , n, i 6= `, and to infinity for i = `; and pi set to zero for i = 1, . . . , n,
i 6= `, and to unity for i = `.

Lexicographic ordering has been studied with respect to IMRT by Jee et al. [74]
and Wilkens et al. [132], and studied with respect to IMPT by Falkinger et al. [54].
The latter two studies allowed for a slight relaxation of the constraints in the
ε-constraint method using a preselected “slip factor.” Wilkens et al. demonstrated
that a slip factor is beneficial in treatment planning for IMRT—the solution can oth-
erwise be entirely determined by the first objective—whereas Falkinger et al. found
that a slip factor is less crucial for IMPT plans due to the additional degrees of free-
dom introduced by modulation in depth. A posteriori methods that rely on refer-
ence point-based optimization are discussed in the next section, and parallelization
of such methods discussed in Paper D. Reference point-based optimization is also
utilized in Paper C.

4.5 A posteriori planning

4.5.1 Pareto set approximation

The a posteriori methods studied in this thesis calculate finite representations of
Pareto optimal sets using an a priori method that is solved a repeated number of
times with respect to different model parameters. Selection of parameters that pro-
duce a well-distributed set of Pareto points is, however, nontrivial. Weighted sum
minimization imposes no explicit requirements on the location of the Pareto op-
timal points. Uniformly distributed weights therefore only results in uniformly
distributed Pareto points under very special conditions [46]. Reference point-
based optimization requires that each Pareto optimal point is contained on the line
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Figure 9. A priori multicriteria optimization methods. The dashed lines
indicate level set curves for the scalarizations.

{z̄ + tp : t ∈ R}, or that it dominates a point on this line. Uniformly distributed
reference points therefore produce uniformly distributed Pareto points [10,46,91].
The disadvantage is that it is general not possible to select reference points from a
large enough set to obtain the entire Pareto optimal set and simultaneously ensure
that all reference points are projected onto this set [91, 110]. Difficulties related to
preselected objective weights or reference points are further discussed in Paper D.

Methods that adapt to the shape of the Pareto optimal set have been proposed to
account for the difficulties associated with preselected parameters. Küfer et al. [77]
proposed to calculate a triangulation of the current set of Pareto points and then it-
eratively bisect the longest edge of this triangulation. Craft et al. [40] exploited the
convexity of Z+ that occurs for convex problems in order to construct inner and
outer approximations of the Pareto optimal set, as illustrated in Figure 10. These
approximations are iteratively refined by addition of one point at the time at the lo-
cation where the distance between the approximations attains its current maximum.
Sandwich approximations of this form are if implemented using weighted sum
minimization associated with the difficulty that the normal vectors of the bounding
faces of the convex hull of the known Pareto points can have negative components
in dimension three and higher. These normal vectors are therefore not immedi-
ately useful as objective weights. Craft et al. used a heuristic to transform normals
with mixed components into nonnegative vectors. Rennen et al. [101] later pro-
posed to augment the inner approximation by setwise summation with Rn+, which
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produces a convex polyhedron that has everywhere nonnegative inwards oriented
normal vectors. The algorithm of Rennen et al. is further developed in Paper A,
where techniques that improves its computational efficiency are suggested.

f2

f1

(a) Inner approximation

f2

f1

(b) Outer approximation

f2

f1

(c) Sandwich approximation

Figure 10. Sandwich approximation of the Pareto surface (thick solid line)
using inner and outer polyhedral approximations (dashed lines).

Sandwich approximations that rely on the ε-constraint method have been stud-
ied by Hoffmann et al. [68]. These authors also gave a variant of the sandwich
method where derivative information is not needed. Sandwich approximations
where the vertices of the outer approximation constitute reference points z̄ for
reference-point based optimization have been suggested by Shao and Ehrgott [111]
and Ehrgott et al. [52]. Serna et al. [109] also considered sandwich approximations,
and showed that the substitution of a general ordering cone C for the Pareto cone
Rn+ in the definition of Pareto optimality according to (7) is useful to disregard non-
relevant parts of the Pareto optimal set. A smaller set of Pareto optimal solutions
is obtained if Rn+ ⊆ C. Multicriteria optimization with respect to general ordering
cones is considered in Paper A.

4.5.2 Pareto set navigation

An equally important aspect of a posteriori planning is the technique used for se-
lection of the clinical plan from the Pareto set representation. Discrete selection
of one of the precalculated plans requires a very dense representation that is not
feasible to generate in practice. A much coarser representation is sufficient if con-
tinuous interpolation between a discrete set of solutions {x1, . . . , xk} is allowed
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according to

k∑
j=1

λjxj , where
k∑
j=1

λj = 1, λj ≥ 0, j = 1, . . . , k. (8)

Continuous interpolation of this form is often called navigation, see Monz et al. [94].
Navigation is best suited for convex FMO formulations because any convex com-
bination of fluence-based plans is feasible if the feasible set is convex. Convexity
in the objectives also enables the objective function values of an interpolated treat-
ment plan to be bounded according to

fi

 k∑
j=1

λjxj

 ≤ k∑
j=1

λjfi(xj), i = 1, . . . , n, (9)

i.e., the objective values of an interpolated solution are at least as good as the linear
interpolation of the objective values of its constituents. An interpolated solution
is therefore near-optimal if the representation of the Pareto set is sufficiently accu-
rate and the coefficients λ in (8) restricted to values such that the right-hand side
of (9) defines a point that is not dominated by any other point in the convex hull of
{f(x1), . . . , f(xk)}.

Interfaces for navigation typically contain slider bar controls for each objective
function, as exemplified in Figure 11. A movement of a slider results in an update
of the current convex combination, and corresponding updates of the displayed
dose and DVH. A slider movement also causes the other sliders to move, with
the direction of movement being dependent on how the objectives are correlated.
The current position of the sliders can be clamped to prevent movements toward
increased objective function values. The update of the convex coefficients in (8)
can be solved as a reference point-based optimization problem where the reference
point is determined by the slider positions [43,94]. This optimization problem can
be solved to approximate optimality in real-time if the exact objective values are
approximated by their conservative bound according to (9), which yields a linear
programming formulation.

4.5.3 Deliverability

A posteriori planning with respect to fluence-based treatment plans need not sac-
rifice plan quality compared to an a priori method which utilizes DMPO if the a
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Figure 11. User interface for Pareto surface navigation in the treatment plan-
ning system RayStation 2.9 (RaySearch Laboratories, Stockholm, Sweden).
The depicted example shows exploration of the tradeoffs between target ho-
mogeneity, dose conformity, and sparing of the kidneys, liver and stomach
for a pancreas cancer case. The clamp on the min dose objective for the PTV
restricts the feasible movements for the remaining sliders.

posteriori method relies on DMPO for conversion of the navigated plan into de-
liverable apertures. Conversion of fluence-based treatment plans using DMPO has
been studied by Craft et al. [39]. These authors proposed a formulation where the
error in DVH due to the conversion is minimized using reference DVH functions
that penalize discrepancy between the current DVH and the DVH associated with
a reference dose distribution dref according to

f(d) =

∫ 1

0
Θ(D(v; d)−D(v; dref))2 dv.

Reference DVH functions are used in Papers B and C.
A conversion subsequent to the navigation is nevertheless a complicating factor

because the decisions during navigation are then taken with incomplete informa-
tion about the final deliverable dose distribution. A large discrepancy between the
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navigated plan and its best approximation by a deliverable plan can at worst force
the treatment planner to make fine-adjustments to the navigated plan and then re-
peat the conversion, which results in the form of iterative workflow that a posteriori
planning is intended to avoid. This shortcoming is addressed by methods for de-
liverable navigation that use precalculated treatment plans on a form such that any
convex combination between plans is directly deliverable. Deliverable navigation
thus ensures that the treatment plan seen during navigation is exactly the treatment
plan that is approved for delivery.

Two methods for deliverable navigation have been proposed for step-and-shoot
IMRT. Craft and Richter [44] proposed to generate step-and-shoot plans with s
segments, and then restrict the number of positive coefficients in the convex com-
binations to k, where 1 < k � n, so that a general navigated treatment plan can be
delivered within ks segments. Salari and Unkelbach [107] used column generation
to calculate a collection of treatment plans that all use a single set of apertures.
The subproblems in the column generation method were posed on a form such that
apertures that contribute to multiple treatment plans were generated. A navigated
plan from this representation is directly deliverable and no limitation exists on the
number of positive components in the convex combinations between plans. The
methods of Craft and Richter and Salari and Unkelbach are in Paper E unified into
a single method where a subset of the apertures are shared across plans and the re-
maining apertures treated as individual. Deliverable navigation for VMAT is also
studied in Paper B.

4.5.4 Clinical benefit

A posteriori planning for IMRT has been investigated in a several retrospective
planning studies where treatment plans generated by weighted sum minimization
are used as benchmark. Thieke et al. [120] studied a paraspinal and a prostate
case and found that a posteriori planning resulted in plans of comparative quality
to the benchmark plans, while only requiring in the order of 10 minutes for the
navigation step. Hong et al. [69] studied ten pancreatic cancer cases and found that
navigation consistently produced acceptable treatment plans within 10 minutes. A
posteriori planning also led to different clinical judgment: a lower stomach mean
dose was consistently selected, often at the expense of increased kidney dose. Craft
et al. [41] studied five glioblastoma and five pancreatic cancer cases and found that
a posteriori planning reduced planning time from 135 to 12 minutes on average,
while physician involvement time increased from 5 to 9 minutes on average. The
plan generated by the a posteriori method was in this study blindly identified as
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superior to the benchmark plan for all patient cases. Wala et al. [128] studied nine
prostate cases and observed navigation times of approximately 10 minutes per case.
These authors also found that physicians ranked the navigated plan as superior to
the benchmark plan for all cases.

4.6 No preference methods

No preference methods permit fully automated planning for routine cases, and can
provide a starting point for manual planning for more challenging clinical scenar-
ios. Some heuristic is typically used to incorporate previous clinical experience
in order to ensure that relevant treatment plans are generated. The dependence on
previous data makes the different no preference methods rather disparate from a
mathematical point of view.

Several no preference methods are techniques for automated selection of ob-
jectives functions and associated weights for weighted sum minimization: Xing et
al. [139] proposed an iterative procedure where the objective weights are updated
in-between each solve in order to maximize a plan quality score based on DVH
criteria. Zhang et al. [144] also solved weighted sum problems in repeated fashion
and updated the problem formulation according to a preset list of rules. Xhaferllari
et al. [137] similarly updated the formulation by introduction of objectives on the
removal of cold and hot spots. Wu et al. [134] used the degree of volume overlap
between targets and OARs as a predictor for attainable DVH criteria and queried
the current patient geometry against a database of previously treated patients in
order to define DVH objectives for weighted sum minimization. Two optimiza-
tions were on average found sufficient to generate acceptable treatment plans if
the DVH criteria generated by the no preference method were used, whereas 28
optimizations on average were necessary for standard weighted sum minimization.

No preference methods based on lexicographic ordering have been proposed by
Clark et al. [32] and Breedveld et al. [19], who used tumor site-specific protocols
to define the ordering of the objectives. The no preference method of Breedveld
et al. has been compared to weighted sum minimization in a prospective planning
study on IMRT for head and neck cancers by Voet et al. [127]. A physician was in
this study asked to identify the superior alternative between a plan generated by the
no preference method and a plan generated by weighted sum minimization, which
resulted in the plan generated by the no preference method being selected on 32 of
33 occasions.
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4.7 Interactive methods

There are few fundamentally interactive methods for radiation therapy treatment
planning. A rare example is a method for brachytherapy planning proposed by
Ruotsalainen et al. [106] where treatment plans are optimized according to a clas-
sification of the objectives into those that should be improved (possibly to a given
aspiration level), those that should be maintained, and those that are allowed to de-
teriorate (possibly to a given bound). The decision maker alters the classification
in-between each solve after inspection of the current solution.

Several authors have also proposed methods that offer some interactivity in
the form of a fine-tuning step, which is useful for the situation when a close to
acceptable treatment plan has been generated. Methods that eliminate hot spots
using locally increased importance weights have been suggested by Cotrutz and
Xing [36] and Lougovski et al. [87]. Süss et al. [117] proposed a similar technique
where the removal of hot spots is ensured by constraints, and the error with respect
to the current treatment plan then minimized. A suitable balance between elim-
ination of the hot spots and perturbations of the otherwise acceptable treatment
plan is here found by continuous navigation between the initial and the corrected
treatment plan.

4.8 Extensions

4.8.1 Robustness tradeoffs

Tradeoffs related to robustness against geometric errors can be accommodated by
methods that explicitly account for the realization of errors during optimization.
The sources of uncertainty are in such methods typically discretized into a set of
scenarios S. The scenario where no error occurs is called the nominal scenario.

Scenario-based optimization is in this thesis only considered with respect to
treatment planning for IMPT. A clear benefit for this treatment modality is that
the planned dose distribution can be calculated separately for each scenario and an
assumption on the static dose cloud approximation (which predictates that a rigid
shift of the patient volume produces a rigid shift of the dose distribution) thereby
avoided. The static dose cloud approximation is inaccurate for ion beams due to
their strong density dependence. Geometric margins that rely on the static dose
cloud approximation have in several studies on treatment planning for IMPT con-
sequently been shown to offer inadequate robustness against geometric errors [3,
28, 58].
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Scenario-based optimization is in this thesis considered either by stochastic
programming or robust optimization. Stochastic programming methods minimize
the expected value of the objective function conditioned on some estimated proba-
bility distribution π, which if applied to problem (2) yields the formulation

minimize
x∈X

Eπ

[
n∑
i=1

wifi(x; ξ)

]
, (10)

where ξ is a random variable that picks a scenario from S. Robust optimization
methods minimize the worst case objective function value, which if applied to
problem (2) yields the formulation

minimize
x∈X

max
s∈S

n∑
i=1

wifi(x; s) . (11)

It is important to note that robust optimization according to (11) attaches no prob-
ability to the scenarios in S. Such optimization is therefore often suitable if no re-
liable estimate on the probability distribution is available, or against non-repeated
uncertainty (systematic errors) where it is sensible to hedge against as large uncer-
tainties as possible in order to ensure a high probability of a satisfactory outcome.
Stochastic programming is generally speaking suitable for repeated uncertainties
(random errors) where the average outcome tends towards the expected outcome
as the number of stochastic events becomes large.

Stochastic programming for IMPT has been studied by Unkelbach et al. [123,
124] and robust optimization for IMPT by Fredriksson et al. [58] and Fredriks-
son [57]. Treatment plan optimization methods for IMPT that consider the dose to
each voxel as independent and protect against the voxel-wise worst case have been
suggested by Unkelbach et al. [124], Chan et al. [27], Pflugfelder et al. [99], and
Liu et al. [81]. The accuracy of the dose prediction by scenario-wise worst case
and voxel-wise worst case has been studied by Casiraghi et al. [25], who found
that the less conservative scenario-wise approach provides accurate prediction of
the DVH whereas voxel-wise worst case results in overly conservative predictions
of the DVH.

Stochastic programming according to (10) can be directly extended to a vector-
valued multicriteria program because

Eπ
[[
f1(x; ξ) · · · fn(x; ξ)

]T]
=
[
Eπ[f1(x, ξ)] · · ·Eπ[fn(x; ξ)]

]T
, (12)
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which holds since expectation is a linear operation (that also preserves convexity).
The multicriteria counterpart of problem (10) is thus given by

minimize
x∈X

[
Eπ[f1(x, ξ)] · · ·Eπ[fn(x; ξ)]

]T
,

which is equivalent to a deterministic multicriteria program under the substitution

fi ←[ Eπ[fi(x, ξ)], i = 1, . . . , n. (13)

Robust multicriteria optimization is possible both in analogy with the right-
hand side of (12), which yields the vector-valued formulation

minimize
x∈X

[
max
s∈S

f1(x; s) · · ·max
s∈S

fn(x; s)
]T

, (14)

and in analogy with the left-hand side of (12), which yields the set-valued formu-
lation

minimize
x∈X

max
s∈S

[
f1(x; s) · · · fn(x; s)

]T
. (15)

The set-valuedness occurs because the inner maximization over S is a multicriteria
program in itself for each fixed x.

Objective-wise worst case optimization for IMPT according to (14) has been
studied by Chen et al. [28]. This formulation is equivalent to a deterministic mul-
ticriteria program under a substitution in direct analogy with (13), which preserves
convexity because the componentwise maximum of a set of convex functions is
convex. Worst case optimization with respect to (15) has been studied from a theo-
retical viewpoint by Ehrgott et al. [51]. The standard definition of Pareto optimality
is not directly applicable for characterization of optimality with respect to this for-
mulation due to the set-valuedness of the objective function. Ehrgott et al. therefore
proposed an extension of Pareto optimality where a feasible x∗ is defined as Pareto
optimal if there exists no feasible x such that

f(x;S) ⊆ f(x∗;S)− (Rn+ \ {0}). (16)

Note that an equivalence holds between this definition and the standard defini-
tion of Pareto optimality according to (7) if S contains only the nominal scenario.
Worst-case optimization according to (15) is less conservative than objective-wise
worst case according to (14) because it only protects against the |S| scenarios
that are physically realizable, as opposed to |S|n combinations between scenar-
ios where the majority are nonphysical.
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Tradeoffs in robustness and conservativeness are studied in Paper F. Robustness
here reflects the magnitude of errors that are accounted for while conservativeness
reflects the degree of protection against variability in the estimated probability dis-
tribution.

4.8.2 Time-efficiency tradeoffs

A short treatment delivery time is beneficial not only with respect to patient through-
put, but also because it reduces the exposure to scatter irradiation and leakage that
poses a risk for second cancers, and because it makes the treatment less susceptible
to intrafraction motion. Minimization of treatment delivery time can for sliding-
window IMRT be posed as a penalty on the sum of the maximum positive variation
in each fluence plane. This penalty is a convex function that is directly propor-
tional to the number of MUs required for delivery [116]. A posteriori planning
that includes minimization of the number of MUs as an objective has been studied
by Craft et al. [45], who found that considerable MU reductions often are feasible
at a very small penalty in dose distribution quality. Penalties on MU in treatment
planning for sliding-window IMRT is studied in Paper C. The same fundamental
mechanism is also used in the study on treatment planning for VMAT by Craft et
al. [42], where fluence profiles at adjacent gantry angles are merged together sub-
sequent to the optimization until the treatment delivery time is sufficiently small.
The estimated treatment delivery time of VMAT plans is in Paper B handled by a
rigid constraint during DMPO.

4.8.3 Beam orientation and delivery technique tradeoffs

The choice of an appropriate delivery technique, such as VMAT against seven-
or nine-field IMRT, is important both in order to make optimal use of clinical re-
sources and in order to maximize the dose quality for the individual patient. A
practical method to investigate different delivery techniques is to calculate a Pareto
set representation with respect to each relevant alternative and then navigate be-
tween these representations in a discrete manner. This form of navigation has been
studied by Craft and Monz [43] and Teichert et al. [118] with respect to the closely
related problem of choosing an optimal gantry angle configuration. Both of the two
references studies found that the optimal gantry angle configuration varies over the
Pareto optimal set. Another tradeoff related to beam orientation is the choice of
start and stop gantry angles for partial arcs in treatment planning for VMAT. This
decision has been studied by Wala et al. [129], who modified the method for mul-
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ticriteria VMAT optimization proposed by Craft et al. [42] into a method that finds
a partial arc that minimizes treatment delivery time while maintaining dose distri-
bution quality within a user-specified bound.

5 Numerical optimization

Treatment plan optimization is in this thesis primarily considered as general non-
linear program that is solved by sequential quadratic programming (SQP). An
SQP method finds successively better approximations {xk}k≥0 of a solution to
the Karush-Kuhn-Tucker (KKT) conditions. Let F denote the composite objective
function of (2) and L the Lagrangian function

L(x, λ) = F (x) +
m∑
j=1

λjcj(x), (17)

where λ is the m-vector of Lagrange multipliers associated with the constraints
c1, . . . , cm. Then, the KKT conditions of problem (2) are given by

cj(x) ≤ 0, j = 1, . . . ,m,
Ax ≤ b, (feasibility)

∇xL(x, λ) = 0, (stationarity)
λ ≥ 0, (nonnegativity of the multipliers)
λicj = 0, j = 1, . . . ,m. (complementarity)

The KKT conditions are necessary conditions for global optimality if some con-
straint qualification holds, such that the gradients of active constraints are linearly
independent or the optimization problem convex and strictly feasible (Slater’s con-
dition). The KKT conditions are also sufficient conditions for local optimality at a
primal-dual feasible solution (x∗, λ∗) if pT∇2

xxL(x∗, λ∗)p > 0 holds for all p 6= 0
in the nullspace of the active constraints. These results are contained in Bazaraa
and Shetty [8], which also contains an overview of constraint qualifications for
nonlinear programming.

Sequential quadratic programming is for equality constrained optimization prob-
lem equivalent to Newton’s method applied to the KKT conditions. Newton’s
method finds the roots to a system g(x) = 0 by iterative steps xk+1 = xk + pk,
where the Newton step pk is the solution to∇g(xk)pk = −g(xk). The Newton step
is also the optimal solution to a second order approximation of the initial problem
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around the current iterate, which is a definition that is valid also for inequality con-
strained problems. A quadratic programming approximation of problem (2) around
xk is given by

minimize
p

1

2
pT∇2

xxL(xk, λk)p+∇F (xk)
T p

subject to cj(xk) +∇cj(xk)T p ≤ 0 j = 1, . . . ,m,
A(xk + p) ≤ b.

(18)

The full step pk defined by the optimal solution to (18) is in general not taken. The
iterates xk are instead updated according to xk+1 = xk + αkpk, where the step
length αk is calculated by minimization of a merit function M according to

minimize
α>0

M(xk + αpk, λk + αdk). (19)

The step dk in the dual variables is given by λk+1 − λk, where λk+1 is the vector
of optimal Lagrange multipliers associated with the first m constraints in (18). A
common form of M is an augmented Lagrangian defined by the introduction of an
additional term to (17) that penalizes violation of the constraints to (2).

Problem (18) is a quadratic program that can be solved efficiently if the Hes-
sian of the Lagrangian ∇2

xxL is positive semi-definite and (18) thereby convex.
The calculation of ∇2

xxL is, however, costly if the number of variables x is large.
A quasi-Newton approximation of this matrix is therefore often used for speed. The
approximate Hessian is iteratively updated based on first order derivative informa-
tion, with the update rule designed so that positive-semidefiniteness is retained.
It is also common to use approximate line-search, meaning that problem (19) is
solved to approximate optimality by evaluation of M with respect to a discrete set
of step lengths.

A quasi-Newton SQP method developed by RaySearch Laboratories (Stock-
holm, Sweden) is used for treatment plan optimization in Papers B–E. The SQP
code SNOPT (Stanford Business Software, Inc., Stanford, California), which im-
plements the quasi-Newton SQP method described in Gill et al. [59], is used for
treatment plan optimization in Paper F. A general review of SQP methods is pro-
vided by Gill and Wong [60].
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6 Summary and main contributions

6.1 Summary of the appended papers

Paper A: An algorithm for approximating convex Pareto surfaces based
on dual techniques

Paper A is co-authored with Anders Forsgren and has been published in INFORMS
Journal on Computing, Vol. 25, No. 2, pp. 377-393, 2013.

This paper concerns efficient approximation of Pareto surfaces to convex mul-
ticriteria problems. An algorithm is proposed that generate well-distributed sets
of Pareto optimal points by calculation of one point from the Pareto surface at the
time where the distance between inner and outer approximations of this surface
currently attains its maximum. The inner approximation relies on that the convex
hull of a set of points is the smallest convex set that contains the points; while the
outer approximation relies on that a supporting halfspace exists at any point in the
boundary of a convex set. The inner approximation also converges towards the
Pareto surface because a closed convex set is the convex hull of the points in its
boundary, while the outer approximation converges towards the Pareto surface be-
cause a closed convex set is the intersection of its supporting closed halfspaces. It
is shown that the calculation of the maximum distance between the inner and outer
approximations amounts to maximization of a convex function over a polyhedral
set. This nonconvex optimization problem is solved by enumeration of the finitely
many vertices of the outer approximation and a solve of a small linear program
for each vertex. Vertex enumeration is demonstrated to be orders of magnitude
more efficient than a previous technique [101] where the facets of the inner ap-
proximation are instead enumerated. The suggested improvements make sandwich
approximation of Pareto surfaces practical in up to about ten dimensions.

Paper B: Multicriteria optimization for volumetric-modulated arc ther-
apy by decomposition into a fluence-based relaxation and a segment
weight-based restriction

Paper B has been published in Medical Physics, Vol. 39, No. 11, pp. 6712-6724,
2012.

This paper considers multicriteria optimization for VMAT that utilizes navi-
gation in two separate stages. The first stage is performed with respect to fluence-
based treatment plans, and serves the purpose of defining a coarse tradeoff between
objectives. The second stage is performed with respect to deliverable VMAT plans
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that share the same set of apertures, and is intended for fine-tuning purposes. The
fluence-based plans in stage one are generated by FMO subject to a total variation
penalty, which limits the intensity modulation to a degree that is attainable by de-
liverable VMAT plans. The plan from this representation that is navigated to by the
user is converted into a deliverable VMAT plan by DMPO towards minimization
of the error in DVH due to the conversion. The VMAT plans that form the basis
for the second navigation stage are generated by segment weight optimization with
respect to the apertures of the initial converted VMAT plan. The treatment plans
generated by the suggested technique are compared to benchmark plans generated
by DMPO towards minimization of a weighted sum of the objectives. Numerical
results with respect to treatment planning for prostate, pancreas, lung, and head and
neck cancer show that the suggested multicriteria method generates VMAT plans
that are of comparable quality to the benchmark plans, and simultaneously enables
for interactive decision making.

Paper C: Improved plan quality in multicriteria radiation therapy opti-
mization by projections onto the Pareto surface

Paper C is co-authored with Kaisa Miettinen and has been printed as Technical re-
port TRITA-MAT-2012-OS4, Department of Mathematics, Royal Institute of Tech-
nology, 2012.

This paper addresses the fact that a general navigated treatment plan has a
nonzero approximation error to Pareto optimality because the Pareto set represen-
tation is finite. It is shown that the approximation error can be eliminated by ref-
erence point-based optimization subsequent to the navigation. This optimization
maximizes the minimal improvement upon the objective values of the navigated
plan, and also ensures that a Pareto optimal treatment plan is obtained which is at
least as good as the navigated plan with respect to all objectives. An augmented
formulation is also proposed that ensures that the DVH curves of targets for the
final treatment plan are at least as uniform as those of the initial navigated plan,
and that the DVH curves of healthy structures never exceed the navigated DVH.
The versatility of the suggested technique is demonstrated by application to plan-
ning for step-and-shoot IMRT, planning form sliding-window IMRT, and planning
for IMPT. Improvements in normal tissue sparing and dose conformity due to the
projections are demonstrated for all three delivery techniques.



40 INTRODUCTION

Paper D: Distributed approximation of Pareto surfaces in multicriteria
radiation therapy treatment planning

Paper D has been published in Physics in Medicine and Biology, Vol. 58, No. 11,
pp. 3501–3516, 2013.

This paper generalizes the method for sandwich approximation of Pareto sur-
faces presented in Paper A to an algorithm that can take advantage of distributed
computational environments. Parallelization is made feasible by application of the
previous sequential method to approximation of an inexpensive model of the Pareto
surface. The model is used to predict the outcome of each iteration in the sequen-
tial algorithm, and the inner and outer approximations then updated accordingly.
The objective weights gathered with respect to the model are used for solves of
the exact problem that are performed in parallel. The number of plans k that are
generated in each batch of solves permits scaling between the previous sequential
algorithm (k = 1) and a fully parallel algorithm (k = m), where m is the total
number of plans to be computed. The model of the Pareto surface is given a shape
that makes it difficult to approximate by piecewise linear bounds in order to avoid
that some parts of the Pareto surface are incorrectly disregarded. A model with
a smooth shape also gives the approximation method a behavior that approaches
optimization over uniformly distributed weights as k → m. The algorithm’s per-
formance as a function of k is studied with respect to a prostate, brain, and pancreas
cancer case. Parallelization is demonstrated to yield approximations of comparable
quality to those generated by the sequential method for k up to 2n, where n is the
number of objectives. This result translates to speed-up of one order of magnitude
in practice because the number of objectives n is typically at least five.

Paper E: Deliverable navigation for multicriteria intensity-modulated
radiation therapy planning by combining shared and individual aper-
tures

Paper E is co-authored with Albin Fredriksson and has been printed as Techni-
cal report TRITA-MAT-2013-OS4, Department of Mathematics, Royal Institute of
Technology, 2013.

This paper concerns deliverable navigation for step-and-shoot IMRT. A deliv-
erable Pareto set representation is calculated by DMPO subject to constraints that
some apertures are shared across all treatment plans. Some apertures are also al-
lowed to be individual, and all segment weights treated as individual. Navigation
thus produces treatment plans that are deliverable within ssh + ksind apertures,
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where ssh and sind are the number of shared and individual apertures, respectively,
and k the number of allowed positive coefficients in the convex combinations be-
tween plans. The coupling between the treatment plans imposed by the shared
apertures implies that the calculation of the Pareto set representation is not a separa-
ble optimization problem in each treatment plan. All treatment plans are therefore
optimized simultaneously, so that an optimal pool of shared apertures is obtained.
A more elaborate method where apertures are only shared across k-tuples of plans
are also discussed, which enables convergence towards the ideal (non-navigable)
Pareto set representation where all apertures are individual. Numerical results with
respect to a two- and three-objective formulation for a paraspinal case show that a
few individual apertures lead to much increased plan quality. The results regarding
optimal partitioning into shared and individual apertures are inconclusive.

Paper F: Controlling robustness and conservativeness in multicriteria
intensity-modulated proton therapy optimization under uncertainty

Paper F is co-authored with Albin Fredriksson and has been printed as Techni-
cal report TRITA-MAT-2013-OS5, Department of Mathematics, Royal Institute of
Technology, 2013.

This paper considers multicriteria optimization under uncertainty, posed as ob-
jectives and constraints that depend on some random variable. Worst case opti-
mization is used to calculate robust solutions, and mathematical theory for this
form of optimization elaborated. Worst case optimization is also contrasted to
objective-wise worst case, which is a previous more conservative method [28]. Em-
pirical results are presented for planning of IMPT with respect to a one-dimensional
patient geometry subject to systematic setup uncertainty. These results show that
worst case optimization better exploits spatial structure and better adapts to a deci-
sion maker’s preferences than objective-wise worst case. Worst case optimization
consequently yields superior dose distributions in the physically realizable scenar-
ios. Tradeoffs in robustness and conservativeness are also studied using a gener-
alization of worst case optimization to minimax stochastic programming, which
minimizes the worst case expectation subject to upper and lower bounds on the
admissible probability distributions. Tradeoffs in robustness are shown to qualita-
tively correspond to a contraction (or expansion) of the dose distribution, whereas
tradeoffs in conservativeness lead to a gradual smoothing (or sharpening) of the lat-
eral dose fall-off. The steep dose fall-off produced by a more conservative method
is empirically demonstrated to be preferable with respect to population tumor con-
trol.
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6.2 Main contributions

The original contributions of this thesis span four topics:

More efficient Pareto surface approximation

• Paper A shows that it is orders of magnitude less costly to calculate the
maximum distance between inner and outer approximations of the Pareto
surface by vertex enumeration over the outer approximation than by facet
enumeration over the inner approximation. This contribution increases the
number of dimensions where sandwich approximations can be practically
computed from about five to ten, which is sufficient to cover the majority of
the formulations that occur in clinical practice [38].

• Paper D introduces the first parallelizable algorithm for sandwich approxi-
mation of Pareto surfaces. Batchwise calculation of 2n treatment plans at
the time, where n is the number of objectives, is demonstrated to be fea-
sible while simultaneously retaining the approximation quality of the finite
Pareto set representation. Treatment plan generation for a challenging treat-
ment case with ten conflicting objectives that takes 4 hours with a sequential
technique thus becomes feasible within about 12 minutes.

Extensions to new delivery techniques

• Paper B introduces the first method for multicriteria VMAT optimization
which utilizes DMPO, and also the first method for deliverable navigation.
Direct machine parameter optimization methods are well-established to pro-
duce plans that require fewer MUs than those generated by FMO, and simul-
taneously provide comparable or improved dose quality.

• Paper F provides the first method for multicriteria IMPT optimization where
robustness is ensured by worst case optimization. Worst case optimization
is preferable to objective-wise worst case because it does not sacrifice plan
quality in the physically realizable scenarios in order to gain in performance
in nonphysical combinations between the scenarios. Worst case optimiza-
tion is also shown to be favorable to stochastic programming with respect to
population tumor control.
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Improvement of treatment plan quality

• Paper C shows that the error to Pareto optimality due to a finite Pareto set
representation can be eliminated by a projection onto the Pareto optimal set
subsequent to the navigation. This projection can also be posed on a form
such that no clinical goals that are initially satisfied become violated due to
the projection.

• Paper E extends deliverable navigation to the use of some apertures that are
from a collective pool and some apertures that are individual. A small num-
ber of individual apertures is shown to greatly improve plan quality. This
contribution constitutes a step towards the long standing goal of directly
deliverable navigation with respect to the unrestricted Pareto set where all
apertures are individual.

Theoretical contributions

• Paper F introduces the concept of convex hull efficiency. Novel results as-
sociated with this concept are that the convex hull efficient solutions can
be found by convex scalarizations, and that this set of solutions is a proper
subset of the Pareto optimal solutions in the general situation. Optimality
with respect to a strongly increasing convex scalarization is shown to be a
sufficient condition for convex hull efficiency, and optimality with respect
to a strictly increasing convex scalarization shown to be a necessary con-
dition for convex hull efficiency. The set of convex hull efficient solutions
are shown to equivalent to the Pareto optimal solutions with respect to worst
case expectation minimization.

6.3 Contributions by co-authors

The study reported in Paper A was performed in collaboration with Anders Fors-
gren, who supervised the study and suggested directions of research. Kaisa Miet-
tinen had a similar role during the work reported in Paper C. The studies reported
in Papers E and F were performed jointly with Albin Fredriksson. The theoreti-
cal work reported in these studied were performed in close collaboration, and the
computational experiments were also jointly designed. The first author of each pa-
per, Albin Fredriksson for Paper E and I for Paper F, performed the majority of the
numerical experiments.
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