RAYPLAN 2023B

Instrucciones de uso

2023 B

Declaración de conformidad

C€ 2862

Cumple con el Reglamento 2017/745 sobre los productos sanitarios. Se puede solicitar una copia de la declaración de conformidad correspondiente.

Avisos de seguridad

Esta documentación para el usuario contiene ADVERTENCIAS relativas al uso seguro del producto. Deben tenerse en cuenta todas las advertencias.

ADVERTENCIA:

El símbolo de advertencia general le informa de un riesgo de lesiones corporales. En la mayoría de los casos, el riesgo está relacionado con un tratamiento incorrecto del paciente.

Nota:

En esta nota se proporciona información adicional sobre un tema específico, por ejemplo, los aspectos que se deben tener en cuenta durante la realización de un paso concreto de unas instrucciones.

Copyright

Este documento contiene información confidencial que está protegida por derechos de autor. Ninguna parte de este documento puede fotocopiarse, reproducirse o traducirse a otro idioma sin el consentimiento previo por escrito de RaySearch Laboratories AB [publ].

Reservados todos los derechos. © 2023, RaySearch Laboratories AB (publ).

El material impreso

Se dispone de copias impresas de documentos relacionados con las instrucciones de uso y las notas de la versión bajo petición.

Marcas comerciales

RayAdaptive, RayAnalytics, RayBiology, RayCare, RayCloud, RayCommand, RayData, RayIntelligence, RayMachine, RayOptimizer, RayPACS, RayPlan, RaySearch, RaySearch Laboratories, RayStation, RayStore, RayTreat, RayWorld y el logotipo de RaySearch Laboratories son marcas comerciales de RaySearch Laboratories AB (publ)*.

Las marcas comerciales de terceros son propiedad de sus respectivos propietarios, que no están afiliados con RaySearch Laboratories AB (publ).

RaySearch Laboratories AB (publ) y sus filiales se denominarán, en adelante, RaySearch.

^{*} Sujeto a registro en algunos mercados.

TABLA DE CONTENIDOS

1	PRES	SENTACIÓN	7
	1.1	Acerca de este manual	8
	1.2	Aplicaciones principales del sistema RayPlan	9
	1.3	Documentación de RayPlan	9
	1.3.1	Documentación del sistema RayPlan	Ć
	1.3.2	Otra documentación asociada	10
2	INFO	RMACIÓN DEL PRODUCTO	11
	2.1	Uso previsto	12
	2.2	Usuario previsto	12
	2.3	Población prevista de pacientes y enfermedades	12
	2.4	Contraindicaciones	12
	2.5	Hardware y sistema operativo	12
	2.6	Datos de contacto del fabricante	13
	2.7	Notificación de incidentes y errores de funcionamiento del sistema	13
	2.8	Representantes autorizados	14
	2.9	Precisión de los cálculos de dosis	16
	2.9.1		16
	2.9.2	Precisión para el motor de dosis de electrones	19
	2.9.3	Precisión del motor de dosis TG43 de braquiterapia	21
	2.10	Etiqueta del producto	22
	2.11	Vigencia	23
	2.12	Información normativa	24
3	INFO	RMACIÓN NECESARIA PARA UN FUNCIONAMIENTO SEGURO	25
	3.1	Precauciones de seguridad	26
	3.1.1		27
	3.1.2	Avisos sobre instalación de secuencias de comandos	34
	3.1.3	Avisos sobre el uso general del sistema	35
	3.1.4		37
	3.1.5	Avisos sobre la exportación en formato DICOM	36
	3.1.6	Avisos sobre cálculo de dosis	41
	3.1.7	· ·	52
	3.1.8	· ·	54
	3.1.9		56
	3.1.1	i S	57
	3.1.1		58
	3.1.1		63
	3.1.1	3 Avisos sobre el comisionado del haz	64
	3.1.1	4 Avisos sobre control de calidad	70

		5 Avisos sobre la RayPlan Storage Tool (Herramienta de almacenamiento de RayStation) .	70
	3.2	Importación de datos del paciente	77
	3.3 3.4	Datos de entrada	7
			77
4	INST	RUCCIONES DE INSTALACIÓN	73
	4.1	Manual de instalación	7
	4.2	Prueba de aceptación del entorno del sistema	74
	4.3	Comprobaciones diagnósticas del hardware	7
	4.4	Entorno de comunicación de datos	7
5	VISU	ALIZACIÓN DE COORDENADAS, MOVIMIENTOS Y ESCALAS	7!
	5.1	El sistema de coordenadas del paciente	7
	5.2	Sistema de coordenadas de pacientes en la exportación en formato DICOM	7
	5.3	El sistema de coordenadas del equipo de tratamiento	7
	5.3.1	Visión general de los sistemas de coordenadas del equipo	7
	5.3.2	El sistema de coordenadas del brazo	80
	5.3.3	Sistema de coordenadas del dispositivo limitador de haz	8:
	5.3.4	El sistema de coordenadas del filtro de cuña	8
	5.3.5	El sistema de coordenadas de apoyo del paciente	8
	5.3.6	El sistema de coordenadas excéntrico de sobremesa	81
	5.3.7	El sistema de coordenadas de sobremesa	81
	5.3.8	El sistema de coordenadas de la fuente de radiación de CyberKnife	8
	5.3.9	Sistema de coordenadas de la curva de dosis en RayPlan Physics	9
	5.3.1 5.4		9: 9 :
	5.4 5.4.1	El estándar de etiquetaje de mordazas y MLC	94
	5.4.2	El estándar de etiquetaje de mordazas IEC 601	9!
		•	
6	INTE	GRIDAD Y SEGURIDAD DEL SISTEMA	97
	6.1	Protección frente a usos no autorizados	9
	6.2	Rutinas de copia de seguridad y mantenimiento de bases de datos	9
	6.3	Permisos de acceso a la base de datos	9
	6.4	RAM ECC	10
	6.5	Puesta fuera de servicio del sistema	100
AF	PÉNDICE	A - DEFINICIONES	101
ÍΝ	DICE		103

1 PRESENTACIÓN

Acerca de RayPlan

RayPlan es una configuración predeterminada de RayStation. Admite toda la gama de actividades de planificación del tratamiento para 3D-CRT, SMLC, DMLC, VMAT, TomoTherapy y radioterapia con haces de electrones. RayPlan también admite la planificación del tratamiento para braquiterapia HDR.

RayPlan es compatible con todos los aceleradores lineales disponibles en el mercado.

En este capítulo

Este capítulo contiene las siguientes secciones:

1.1	Acerca de este manual	р. 8
1.2	Aplicaciones principales del sistema RayPlan	p. 9
1.3	Documentación de RayPlan	p. 9

1.1 **ACERCA DE ESTE MANUAL**

Este manual contiene información general sobre el producto, información relacionada con la seguridad, instrucciones de instalación, información sobre sistemas de coordenadas y escalas de equipo e información sobre la integridad y la seguridad del sistema. Lea atentamente este manual antes de utilizar el sistema RayPlan 2023B. Solo se puede garantizar el funcionamiento óptimo del dispositivo si se siguen las instrucciones de este manual. Lea atentamente las RSL-D-RP-2023B-RN, RayPlan 2023B Release Notes porque proporcionan instrucciones recientes sobre cómo utilizar el sistema RayPlan 2023B.

Algunos módulos descritos en este manual no están incluidos en la configuración estándar de RayPlan 2023B y pueden requerir licencias adicionales.

1.2 APLICACIONES PRINCIPALES DEL SISTEMA RAYPLAN

El sistema RayPlan incluye las siguientes aplicaciones principales:

RayPlan: la aplicación principal donde se llevan a cabo todas las actividades relacionadas con la planificación del tratamiento.

La aplicación RayPlan se describe en *RSL-D-RP-2023B-USM, RayPlan 2023B User Manual*.

RayPlan Physics: la aplicación de puesta en servicio del haz en la que se pueden llevar a cabo actividades como la puesta en servicio del haz, de la TC y el modelado en 3D de haces.

La aplicación RayPlan Physics se describe en RSL-D-RP-2023B-RPHY, RayPlan 2023B RayPlan Physics Manual.

Clinic Settings — la herramienta de administración de los parámetros clínicos. La aplicación Clinic Settings se describe en *RSL-D-RP-2023B-USM*, *RayPlan 2023B User Manual*

RayPlan Storage Tool — la herramienta de administración de bases de datos. La aplicación RayPlan Storage Tool (Herramienta de almacenamiento de RayStation) se describe en el *RSL-D-RP-2023B-USM*, *RayPlan 2023B User Manual*.

1.3 DOCUMENTACIÓN DE RAYPLAN

1.3.1 Documentación del sistema RayPlan

La documentación del sistema RayPlan 2023B consta de:

Documento	Descripción
RSL-D-RP-2023B-IFU, RayPlan 2023B Instructions for Use	Este manual contiene información normativa y de seguridad sobre el sistema RayPlan 2023B.
RSL-D-RP-2023B-RN, RayPlan 2023B Release Notes	En este documento se proporciona un resumen de las nuevas funciones, los problemas conocidos y los cam- bios desde la última versión de RayPlan.
RSL-D-RP-2023B-USM, RayPlan 2023B User Manual	En este manual se describe la funcionalidad del sistema RayPlan 2023B y se ofrecen instrucciones paso a paso sobre cómo llevar a cabo las operaciones más habituales.
RSL-D-RP-2023B-RPHY, RayPlan 2023B RayPlan Physics Manual	Este manual describe la aplicación RayPlan Physics 2023B.
RSL-D-RP-2023B-REF, RayPlan 2023B Reference Manual	Este manual contiene descripciones de algoritmos e información de referencia física.
RSL-D-RP-2023B-0PT, RayPlan 2023B A Guide to Optimization in RayPlan	Este manual contiene información detallada sobre la optimización de RayPlan 2023B.

1.3.2 Otra documentación asociada

- RSL-D-RP-2023B-SEAT, RayPlan 2023B System Environment Acceptance Test Protocol
- RSL-D-RP-2023B-BCDS, RayPlan 2023B Beam Commissioning Data Specification
- RSL-D-RP-2023B-DCS, RayPlan 2023B DICOM Conformance Statement
- RSL-D-RP-2023B-SEG, RayPlan 2023B System Environment Guidelines
- RSL-D-RP-2023B-ATP, RayPlan 2023B Product Acceptance Test Protocol
- RSL-D-RP-2023B-SUO, RayPlan 2023B System Upgrade Options
- RSL-D-RP-2023B-CIRSI, RayPlan 2023B Customer Instruction for RayPlan Installation
- RSL-P-RP-CSG, RayPlan Cyber Security Guidance
- RSL-P-RP-RGI, RayPlan RayGateway Installation Instructions

En el caso de un paquete de servicio, solo se actualizarán los manuales afectados. Nota: Para obtener una lista completa de los manuales actualizados en el paquete de servicio, consulte las notas de la versión (disponibles en Notas de la versión deRayPlan) de este paquete de servicio concreto.

2 INFORMACIÓN DEL PRODUCTO

En este capítulo se proporciona información importante sobre el sistema RayPlan 2023B.

En este capítulo

Este capítulo contiene las siguientes secciones:

2.1	Uso previsto	p. 12
2.2	Usuario previsto	p. 12
2.3	Población prevista de pacientes y enfermedades	p. 12
2.4	Contraindicaciones	p. 12
2.5	Hardware y sistema operativo	p. 12
2.6	Datos de contacto del fabricante	p. 13
2.7	Notificación de incidentes y errores de funcionamiento del sistema	p. 13
2.8	Representantes autorizados	p. 14
2.9	Precisión de los cálculos de dosis	p. 16
2.10	Etiqueta del producto	p. 22
2.11	Vigencia	p. 23
2.12	Información normativa	p. 24

2.1 **USO PREVISTO**

RayStation es un sistema informático de radioterapia y oncología médica. A partir de las entradas del usuario, RayStation propone planes de tratamiento. Después de que los usuarios previstos autorizados revisen y aprueben una propuesta de plan de tratamiento. RayStation también podrá utilizarse para administrar tratamientos.

Las funciones del sistema se pueden configurar según las necesidades del usuario.

Japón: para el uso previsto en Japón, consulte la información normativa y las instrucciones de uso de RayStation para Japón RSJ-C-00-03.

2.2 **USUARIO PREVISTO**

Los usuarios previstos de RayStation deben ser expertos clínicamente cualificados que hayan recibido formación para utilizar el sistema.

Los usuarios deben tener conocimiento práctico del inglés o del idioma en que se encuentra la interfaz de usuario.

POBLACIÓN PREVISTA DE PACIENTES Y ENFERMEDADES 2.3

Los pacientes previstos de RayStation son pacientes en los que un médico cualificado y titulado ha decidido que es adecuado administrar radioterapia o tratamiento oncológico médico para tumores, lesiones y otras enfermedades.

2.4 CONTRAINDICACIONES

El usuario es responsable de determinar el plan de tratamiento individual y las técnicas para cada paciente; esto también incluye la identificación de cualquier contraindicación para el tratamiento individual.

2.5 HARDWARE Y SISTEMA OPERATIVO

RayPlan 2023B se instalará en un PC de gama alta con una resolución de pantalla recomendada de 1920 x 1200 píxeles (o 1920 x 1080). RayPlan 2023B es compatible con diferentes versiones de los sistemas operativos Windows. Para obtener más información sobre las configuraciones recomendadas de hardware y del sistema operativo, consulte RSL-D-RP-2023B-SEG, RayPlan 2023B System Environment Guidelines.

El sistema solo debe utilizarse en un ordenador que cumpla los estándares de seguridad de hardware pertinentes en cuanto a fallos eléctricos y radiación electromagnética.

Se recomienda instalar nuevos Windows Service Packs. Son conjuntos probados y acumulativos de actualizaciones críticas y de seguridad ampliamente publicados por Microsoft. Además, también se recomienda instalar actualizaciones de seguridad, que son parches ampliamente publicados para solucionar vulnerabilidades relacionadas con la seguridad del sistema operativo. Se desaconseja instalar cualquier otra actualización. Una vez instaladas todas las actualizaciones, se debe comprobar el funcionamiento del sistema; consulte el sección 4.2 Prueba de aceptación del entorno del sistema en la página 74.

Microsoft SQL Server

Se recomienda instalar nuevos paquetes de servicios de SQL Server. Microsoft los publica y prueba e incluye conjuntos acumulativos de revisiones y correcciones para problemas notificados. Después de todas las actualizaciones, se debe verificar el rendimiento del sistema (consulte sección 4.2 Prueba de aceptación del entorno del sistema en la página 74).

GPU utilizadas para los cálculos

Las GPU utilizadas para cálculo deben tener RAM ECC y el estado ECC debe estar activado en la configuración del controlador de la GPU. La versión de los controladores de la GPU, identificada en las Directrices del Entorno del Sistema, debe utilizarse en todo momento. Si se utilizan varias GPU para los cálculos, se recomienda que todas sean del mismo modelo. Si se utilizan varias GPU de modelos diferentes, es posible que los cálculos consecutivos no den resultados idénticos, en función de la tarjeta o tarjetas gráficas que se hayan utilizado. Para obtener una lista detallada de las tarjetas gráficas compatibles, consulte RSL-D-RP-2023B-SEG, RayPlan 2023B System Environment Guidelines. Se han realizado validaciones adicionales que se identifican con los certificados disponibles en support@raysearchlabs.com.

2.6 DATOS DE CONTACTO DEL FABRICANTE

RaySearch Laboratories AB (publ) Eugeniavägen 18C SE-113 68 Stockholm Suecia Teléfono: +46 8 510 530 00

Correo electrónico: info@raysearchlabs.com País de origen: Suecia

2.7 NOTIFICACIÓN DE INCIDENTES Y ERRORES DE FUNCIONAMIENTO DEL SISTEMA

Notifique los incidentes y errores a la dirección de correo electrónico de asistencia de RaySearch, support@raysearchlabs.com, o al servicio de asistencia local por teléfono.

Cualquier incidente grave que haya ocurrido en relación con el dispositivo debe notificarse al fabricante.

En función de las reglamentaciones aplicables, es posible que los incidentes también deban notificarse a las autoridades nacionales. Para la Unión Europea, los incidentes graves deben notificarse a la autoridad competente del Estado miembro de la Unión Europea en el que reside el usuario o el paciente.

2.8 **REPRESENTANTES AUTORIZADOS**

En la tabla siguiente se proporcionan los representantes autorizados y su información de contacto.

Representantes autorizados	Información de contacto
Representante australiano	Emergo Australia Level 20, Tower II Darling Park 201 Sussex Street Sydney, NSW 2000 Australia
Importador de Brasil	Emergo Brazil Import Importação e Distribuição de Produtos Médicos Hospitalares Ltda Avenida Francisco Matarazzo, 1752, sala 502 e 503, Água Branca, São Paulo, SP CEP:05.001-200. CNPJ: 04.967.408/0001-98 Email: brazilvigilance@ul.com Responsável Técnico: Luiz Levy Cruz Martins – CRF/SP: 42415 Anvisa nº: 80117580996
Representante chino	RaySearch (Shanghai) Medical Device Co., Ltd Room 608, No. 1118, Pudong South Road Pilot Free Trade Zone, Shanghai China
Representante de Hong Kong	Emergo Hong Kong Limited 6/F, 100QRC 100 Queen's Road Central Hong Kong
Representante de Israel	I.L Emergo Israel Ltd. Andrei Sakharov 9 Matam Park Haifa 3508409 P.O.B. 15054 Haifa 3190501 Israel
Representante japonés	RaySearch Japan K.K. Saiwai building, 1-3-1 Uchisaiwaicho Chiyoda-ku Tokyo 100-0011 Japón

Representantes autorizados	Información de contacto
Representante coreano	RaySearch Korea, LLC 11F, Sin-il Building 131 oegye-ro (Chungmu-ro-2-ga) Jung-gu, Seoul, P.O. Box 04537 Corea
Promotor de Nueva Zelanda	CARSL Consulting P0 Box 480 Pukekohe Nueva Zelanda
Representante de Singapur	RaySearch Singapore Pte. Ltd. 260 Orchard Road #07-01/04 The Heeren, Singapore 238855 Singapur
Representante de Taiwán	Tomorrow Medical System Co., Ltd. 6F, No. 366, Chang Chun Road Taipei, 104 Taiwán
Representante tailandés	Kamol Sukosol Electric Co., Ltd. 665 Mahachai Road, 2nd Floor Samranraj, Pranakorn Bangkok 10200 Tailandia
Representante norteamericano	RaySearch Americas, Inc. The Empire State Building 350 5th Avenue, Suite 5000 New York, New York 10118 EE. UU.

PRECISIÓN DE LOS CÁLCULOS DE DOSIS 2.9

Se ha comprobado que todos los motores de dosis de RauPlan 2023B tienen el mismo nivel de precisión que los de los principales sistemas de planificación del tratamiento independientes. El usuario debe validar los cálculos de dosis para todas las situaciones clínicamente relevantes; consulte sección 3.1.1 Avisos sobre la responsabilidad del usuario en la página 27 para obtener más información.

Nota:

Los modelos de haces de RayPlan son generales en cuanto al tipo de equipo y sus propiedades. Es posible crear modelos de haces para configuraciones del equipo de tratamiento que RaySearch no haya validado expresamente.

2.9.1 Precisión para los motores de dosis de fotones

RayPlan tiene dos motores de dosis de fotones: Collapsed Cone (CC) y Monte Carlo (MC). A continuación se describen las estrategias de validación de los dos motores de dosis, seguidas de una descripción del ámbito de la validación de diferentes máquinas y técnicas de tratamiento. El motor de dosis Monte Carlo no es compatible con las máquinas TomoTherapy.

Estrategia de validación para el motor de dosis Collapsed Cone (Cono colapsado) de fotones

La validación de RayPlan se ha realizado frente a un conjunto considerable de mediciones, como dosis de puntos en maniquíes homogéneos y heterogéneos, dosis lineales, películas y mediciones empleando los detectores Delta4, MapCheck, ArcCheck, MatriXX, Octavius 1500 y PTW 729. Esto incluye la serie de pruebas de la IAEA (OIEA), que incluye dosis medidas para un equipo Elekta para una serie de casos de prueba para energías de 6 MV, 10 MV y 18 MV. 1 Los criterios de aceptación de las validaciones frente a mediciones se formulan en términos de criterio de gamma (se aceptan si el valor gamma es inferior a 1 para el 95% de los puntos de datos de gamma 3%/3 mm), de diferencias entre las dosis de puntos y de niveles de confianza. La precisión global es aceptable. Se han identificado algunas limitaciones de algoritmos que se describen en este apartado, en la advertencia 4001 de sección 3.1.1 Avisos sobre la responsabilidad del usuario en la página 27 y en el apartado de puntos débiles del algoritmo del RSL-D-RP-2023B-REF, RayPlan 2023B Reference Manual.

El motor de dosis de fotones Collapsed Cone (cono colapsado) de RayPlan 2023B también se ha comparado con sistemas de planificación de tratamiento clásicos y reconocidos, como Eclipse (Varian), Pinnacle³ Radiation Treatment Planning System 7.2 (Philips), Monaco (Elekta) yOncentra (Elekta). La comparación incluye planes para equipos Siemens, Elekta y Varian. La concordancia entre la dosis calculada por los sistemas de planificación del tratamiento independientes y la dosis de RayPlan se define como un valor gamma ² global inferior a 1 para el 95% del volumen para el

¹ IAEA-TECD0C-1540, "Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems", abril de 2007.

² Low D.A., Harms W.B., Mutic S, and Purdy J.A., A technique for the qualitative evaluation of dose distributions, Med. Phys. 25 (1998) 656-661.

criterio de gamma (3%, 3 mm) y para el 98% del volumen para el criterio de gamma (5%, 5 mm). Como en todos los casos se devuelven distribuciones gamma dentro de los criterios de aceptación, los cálculos del motor de dosis pueden considerarse equivalentes a los de los sistemas clínicos con los que se compararon.

La validación se ha centrado en el uso clínico frecuente, con modelos LINAC comunes, como Varian (600 CD, CLINAC, 2100, 2100 EX, 2300C/D, Trilogy, TrueBeam con MLC MLC120, HD120, Millenium MLC, m3 y Varian Halcyon), Elekta (con MLCi/MLCi2, Beam Modulator y cabezales Agility), y Siemens (Primus con 3D-MLC y Artiste), para energías entre 4 y 20 MV, y maniquíes de agua y geometrías de pacientes. La administración sin filtro aplanador se valida utilizando, por ejemplo, Siemens Artiste y Varian Halcyon. La mayoría de los datos se recogen utilizando MLC con hojas de 5 y 10 mm de ancho. RayPlan 2023B también se ha validado con el MLC complementario Brainlab m3 en una máquina Varian Novalis. El MLC m3 no ha sido validado con ninguna otra máquina, por ejemplo, una máquina sin mordaza, como las máquinas Siemens. No se ha validado ningún otro MLC adicional.

Validación de cuñas, bloques y conos

La validación de las cuñas se realiza únicamente en agua. La validación se centra en campos cuadrados centrales con algunas excepciones. Se debe tener especial cuidado al verificar y evaluar los modelos de haz de cuña. La validación de bloques se realiza comparando RayPlan 2023B con Eclipse (Varian) y Oncentra (Elekta) devolviendo distribuciones gamma dentro de los criterios de aceptación y como parte del conjunto de pruebas del OIEA. El conjunto de pruebas del OIEA también incluye cuñas Elekta. Solo se admiten bloques de fotones divergentes. La validación de conos se limita a los LINAC de Elekta.

Cálculo de dosis para planes de rotación

La técnica estándar de administración VMAT se ha validado para los LINAC de Varian, Elekta y Vero. La secuenciación VMAT de ventana deslizante ha sido validada para los LINAC de Elekta Agility y Varian Halcyon. La secuenciación VMAT debe considerarse a la par con una nueva técnica de tratamiento y, por tanto, debe realizarse una validación del modelo de haz y del comportamiento de la máquina, y el paciente debe hacer un control de calidad.

La validación ha demostrado que el cálculo de dosis de RayPlan para planes de rotación de campos pequeños es muy sensible a los parámetros de MLC del modelo de haz.

RayPlan 2023B ofrece la técnica de modo ráfaga de VMAT, que consiste en que en cada segundo segmento se produce un movimiento del MLC con el haz apagado y cada dos segmentos se enciende el haz sin que se mueva el MLC. La técnica del modo ráfaga solo ha sido concebida y validada para los equipos Siemens.

La VMAT con arcos de onda, es decir, VMAT con rotación anular para los LINAC de brazo anular Hitachi y Vero, actualmente solo pueden ser suministrada con estas máquinas. En principio, se podría crear el mismo movimiento utilizando el movimiento de la mesa. La implementación del arco de onda en RayPlan 2023B solo está pensada y validada para los LINAC de brazo anular Vero y Hitachi.

Cálculo de la dosis para Vero

En RayPlan 2023B, se ha realizado una validación del equipo Vero. El motor de dosis CC se ha validado correctamente en comparación con las mediciones de los planes de MLC y VMAT estáticos.

No se ha validado en IMRT dinámico (DMLC) para Vero y el DMLC no está disponible para los equipos Vero en RayPlan 2023B. La validación para Vero se limita al MLC para Vero con 30 pares de láminas con todas las amplitudes de lámina de 0,5 cm. La administración del seguimiento dinámico no ha formado parte de la validación de RayPlan 2023B. La validación de la dosis administrada para planes de Vero con seguimiento dinámico activado depende del usuario.

Cálculo de dosis para el LINAC de brazo anular Hitachi

Hitachi está desarrollando un nuevo LINAC con el nombre de trabajo LINAC de brazo anular de Hitachi. Aún no se habrá lanzado clínicamente en el momento del lanzamiento de RayPlan 2023B. Respecto a RayPlan 2023B, la validación del LINAC de brazo anular de Hitachi se ha realizado con una versión no clínica de la máquina. Los motores de dosis CC y MC han sido validados con éxito en comparación con las mediciones de los planos estáticos MLC, Arco Estático, Arco Conformado, VMAT y arco de onda. Solo se han validado los planos del arco de onda con rotaciones anulares de hasta ± 15 grados. La IMRT dinámica (DMLC) para el LINAC de brazo anular de Hitachi no ha sido validada y la DMLC no está disponible para el LINAC de brazo anular de Hitachi en RayPlan 2023B. La entrega con seguimiento dinámico no ha formado parte de la validación de RayPlan 2023B. Corresponde al usuario validar la dosis administrada para los planos LINAC de brazo anular de Hitachi con seguimiento dinámico activado. Con la validación realizada con una versión no clínica de la máquina, se debe tener especial cuidado antes de utilizar RayPlan 2023B con el LINAC de brazo anular de Hitachi una vez que la máquina haya sido aprobada para uso clínico.

Cálculo de dosis de CyberKnife

El cálculo de dosis de RayPlan 2023B se ha validado para equipos de tratamiento de CyberKnife M6/S7. Las versiones anteriores de CyberKnife no son compatibles con RayPlan 2023B.

El motor de dosis Collapsed Cone (cono colapsado) se ha validado correctamente con respecto a las mediciones de los planes de tratamiento colimados con conos fijos, conos de iris y MLC. Las mediciones se han realizado con película y cámara de ionización, en diferentes maniquíes homogéneos y heterogéneos, por ejemplo el maniquí pulmonar CIRS. La validación incluye diferentes conjuntos de nodos y técnicas de sincronización del movimiento.

La técnica de sincronización del movimiento seleccionada no tiene ningún efecto sobre la dosis calculada en RayPlan. Para obtener información precisa sobre el seguimiento del objetivo mediante las técnicas de sincronización de movimiento disponibles para el equipo de tratamiento de CyberKnife, consulte Accuray.

Además de la comparación con las mediciones, la dosis de RayPlan se ha comparado con la dosis calculada mediante los motores de dosis de Accuray con haz concentrado de tamaño finito (Finite Size Pencil Beam, FSPB) y Monte Carlo y ha mostrado una coincidencia excelente.

Estrategia de validación para el motor de dosis de fotones Monte Carlo

El motor de dosis de fotones Monte Carlo utiliza el mismo cálculo de fluencia en el cabezal del LINAC que el motor de dosis Collapsed Cone. La descripción de los detalles de MLC, bloques, conos, cuñas virtuales y transmisión de cuñas físicas se ha validado exhaustivamente en combinación con el motor de dosis Collapsed Cone. El mismo cálculo de fluencia se ha validado también en combinación con el cálculo de dosis Monte Carlo utilizando un subconjunto representativo de las mediciones del cálculo de dosis del Collapsed Cone. El subconjunto se selecciona para cubrir diferentes energías

(de 4 a 20 MV), modelos LINAC (Varian con MLC120, HD120 y m3, Elekta con MLC Agility y MLCi/i2, y CyberKnife), cuñas (cuña estándar Varian, EDW y cuña motorizada Elekta), conos y bloques, técnicas de tratamiento (3D-CRT, SMLC, DMLC y tratamientos de arco) y geometrías homogéneas y heterogéneas. Se incluyó el conjunto de pruebas del OIEA (Elekta 6 MV, 10 MV, 18 MV) y se añadió un conjunto de pruebas AAPM TG105 de alta resolución (TrueBeam con 6 MV, 10 MV, 10 MV FFF) con insertos heterogéneos para diferentes geometrías (cortes gruesos, incidencia inclinada, superficies en forma de nariz, escalones) en agua en comparación con la validación de dosis de Collapsed Cone.

Las mediciones incluyeron perfiles escaneados, dosis de profundidad y mediciones puntuales en agua y en el maniquí CIRS, así como mediciones con película, Delta4, ArcCheck y MapCheck. Los criterios de aceptación fueron los mismos que los utilizados para la validación de Collapsed Cone y la precisión general fue aceptable. La mayoría de las limitaciones descritas en sección 2.9.1 Precisión para los motores de dosis de fotones en la página 16 también se aplican al motor de dosis Monte Carlo. Para obtener más detalles, véase RSL-D-RP-2023B-REF, RayPlan 2023B Reference Manual. Véase también la advertencia 4001 en sección 3.1.1 Avisos sobre la responsabilidad del usuario en la página 27.

Además de la validación basada en mediciones, el cálculo de fotones de Monte Carlo en el paciente se ha comparado con EGSnrc respecto a distintas geometrías (placas, insertos heterogéneos fuera del eje, superficies curvas), materiales (agua, pulmón, hueso, aluminio, titanio), energías (de 0,5 a 20 MeV) y tamaños de campo (0,4 x 0,4 cm a 40 x 40 cm). Puesto que ya no hay incertidumbre respecto a la medición, los criterios de aceptación de las pruebas de validación usando una dosis simulada son más estrictos que los criterios utilizados para la medición: es necesario que un 95% de todos los vóxeles tengan un valor gamma por debajo de 1 para gamma 2%, 2 mm.

El motor de dosis de Monte Carlo no es compatible con equipos TomoTherapy. El cálculo no se ha validado para LINAC Vero y Siemens. La validación del cálculo de dosis de RayPlan 2023B Monte Carlo con equipos Vero y Siemens depende del usuario.

2.9.2 Precisión para el motor de dosis de electrones

La precisión del cálculo de la dosis de electrones en RayPlan 2023B se ha validado con éxito en entornos clínicamente relevantes. El objetivo de la validación es ofrecer evidencia de una precisión de dosis clínicamente aceptable para los LINAC utilizando la técnica de dispersión de doble lámina con aplicadores y recortes. El modelo de espacio de fase de electrones en RayPlan está diseñado para modelar esta disposición. La implementación se basa en parámetros y, por tanto, es genérica respecto a una disposición típica de doble lámina, aplicador y recorte.

El sistema RayPlan 2023B se ha validado para el uso clínico típico del aplicador con campos colimados recortados. La validación cubre energías entre 4 y 25 MeV, en maniquíes de agua con y sin inhomogeneidades y en geometrías de pacientes con LINAC de los principales fabricantes. Solo se admiten y están validados los recortes Cerrobend con bordes rectos, es decir, paralelos a la línea del eje del haz.

Se ha realizado la validación de las siguientes combinaciones de LINAC y energías de electrones:

	4 MeV	6 MeV	9 MeV	12 MeV	15 MeV	18 MeV	20 MeV	25 MeV
Varian Clinac 2100			Х				Х	
Elekta Synergy		Х		Х		Х		
Elekta Agility	Х	Х	х	Х				
Elekta BM		х	х	Х	Х			
Siemens Primus		х		Х		Х		
EGSnrc (máquina genérica de tratamiento de electro- nes)			Х			Х		X

El motor de dosis de electrones Monte Carlo se ha comparado con el sistema de planificación del tratamiento Oncentra (Elekta) utilizando los mismos criterios gamma que para los fotones, véase sección 2.9.1 Precisión para los motores de dosis de fotones en la página 16. La comparación con Oncentra incluye planos para una máquina Elekta Synergy. Dado que todos los casos devuelven distribuciones gamma dentro de los criterios de aceptación, los cálculos de dosis de electrones pueden considerarse equivalentes al sistema clínico con el que se comparó.

Además, el motor de dosis de electrones de RayPlan 2023B se ha validado con mediciones de máquinas de tratamiento con mordazas x e y (Elekta y Varian), máquinas Elekta con Beam Modulator y máquinas sin mordazas x [Elekta Agility y Siemens]. En el agua, el 98 % de los valores de dosis calculados superarán a gamma (5 %, 5 mm) < 1 cuando se comparen con las dosis medidas, y el 95 % superarán a gamma (5 %, 5 mm) < 1.

El cálculo de dosis de electrones Monte Carlo en el paciente también se ha validado exhaustivamente frente al código independiente Monte Carlo EGSnrc para diferentes geometrías, materiales y energías. En la comparación con las dosis EGSnrc se utilizan los mismos criterios de aceptación que en la comparación con las mediciones.

Todas las pruebas de validación devuelven distribuciones gamma dentro de los criterios de aceptación, excepto una desviación menor de Elekta Agility. Para un caso de prueba de 9 MeV con un maniquí de corte grueso óseo, la diferencia relativa entre la dosis medida y la calculada es del 5,3 %, lo cual está fuera del nivel de tolerancia del 5 %. Se realizó una medición adicional en el mismo punto que redujo la diferencia relativa al 4,4 %. Esta cifra continúa estando por encima del criterio de aceptación del 3 %, pero dentro del nivel de tolerancia del 5 %. El mismo caso de prueba para energías de electrones de 6 MeV y 12 MeV pasa el criterio de aceptación, y los casos de prueba para energía de electrones de 9 MeV pasan los criterios de aceptación para los otros dos maniquíes de corte grueso, uno de los cuales contiene tanto un corte grueso óseo como un corte grueso pulmonar y debería ser más complejo que el caso de prueba fallido con solo el corte grueso óseo. Además, uno de los casos de prueba que compara la dosis EGSnrc con RayPlan 2023B utiliza hueso a 9 MeV y esta prueba pasa el criterio de aceptación. El punto de medición se encuentra en la atenuación distal, lo que significa que la medición es muy sensible a pequeños desajustes o a

una mala interpretación de la densidad utilizada en el maniquí. Por tanto, concluimos que es muy probable que el punto de medición en este caso sea inexacto.

La precisión global es aceptable y se concluye que el motor de dosis de electrones Monte Carlo es seguro para uso clínico.

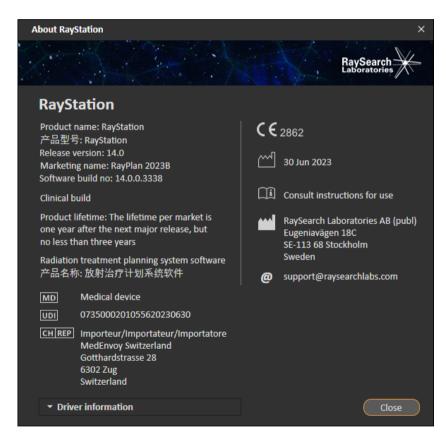
2.9.3 Precisión del motor de dosis TG43 de braquiterapia

El motor de dosis TG43 de braquiterapia se ha validado frente a datos along-away (de coordenadas rectangulares o cartesianas) de controles de calidad publicados de seis fuentes habituales de HDR, como las fuentes E&Z Bebig CoO-A86 e Ir2.A85-2. Los criterios de aceptación se han formulado en términos de criterios gamma locales y diferencias de dosis relativas. Las seis fuentes superan los criterios de aceptación.

El motor de dosis también se ha validado frente a sistemas clínicos de planificación del tratamiento independiente mediante la implementación del formalismo TG43 (SagiPlan, E&Z Bebig y Oncentra Brachy, Elekta). La validación se realiza tanto para posiciones de permanencia únicas en un maniquí como para planes de tratamiento para cuello uterino, próstata y mama. Además, se ha comparado con un motor de dosis Monte Carlo independiente (EGS Brachy) para un caso de paciente relevante. Los criterios gamma locales se utilizan para la comparación con los sistemas independientes. Puesto que todos los casos devuelven distribuciones gamma dentro de los criterios de aceptación, el cálculo de dosis de braquiterapia basada en TG43 funciona igual de bien que los sistemas independientes con los que se comparó.

También se ha realizado la validación frente al procedimiento de medición analítico EQUAL-ESTRO. El punto de medición supera el criterio de aceptación formulado como una diferencia de dosis relativa.

La precisión general del motor de dosis TG43 de RayPlan se ajusta a las normas clínicas. Sin embargo, el formalismo TG43 tiene algunas limitaciones intrínsecas que el usuario debe conocer. Los criterios de aceptación y las limitaciones del algoritmo del motor de dosis pueden consultarse en la sección *Precisión y limitaciones del motor de dosis TG43* de *RSL-D-RP-2023B-REF*, *RayPlan 2023B Reference Manual*.


2.10 **ETIQUETA DEL PRODUCTO**

El número de versión de un sistema RayPlan 2023B instalado se puede encontrar eligiendo Help: About RayStation (Ayuda: Acerca de RayStation) en el menú de RayPlan.

Se puede identificar la siguiente información:

- Nombre del producto = RayStation
- 产品型号: RayStation (solo para el mercado chino)
- Versión = 14.0
- Nombre de comercialización = RayPlan 2023B
- Número de compilación del software = 14.0.0.3338
- Compilación clínica = indica que se trata de un software diseñado para el uso clínico.
 - Nota: una instalación clínica requiere tanto una compilación clínica como una licencia clínica. De lo contrario, se mostrará "Not for clinical use (No apto para uso clínico) en la barra de título.
- Vigencia del producto = la vigencia por mercado es de un año después de la siguiente versión principal, pero no inferior a tres años
- Radiation Treatment Planning System Software = el nombre genérico del producto
- 产品名称: 放射治疗计划系统软件 (solo para el mercado chino)
- = indica que el producto es un producto sanitario
- = número único de identificación del dispositivo
- = el representante autorizado suizo y el importador
- Información del controlador = la versión instalada para CyberKnife RAIL. Expanda este campo haciendo clic en la flecha.

- = fecha de producción
- = consulte las instrucciones de uso
- el nombre y la dirección del fabricante
- e la dirección de correo electrónico de asistencia

Ilustración 1. El cuadro de diálogo **About RayStation** (Acerca de RayStation) para RayPlan.

2.11 VIGENCIA

La vigencia por mercado es de un año después de la siguiente versión principal, pero no inferior a tres años. El soporte para una versión de producto en un mercado finaliza 36 meses después de la autorización de comercialización, siempre que se lance una nueva versión principal en un plazo

de 24 meses. De lo contrario, el soporte se prolonga y finaliza 12 meses después de que se lance la siguiente versión principal en ese mercado. Cuando el soporte ya no está disponible para una versión en un mercado determinado, se considera que es el final de la vigencia en ese mercado.

INFORMACIÓN NORMATIVA 2.12

Cláusula de exención de responsabilidad

Japón: para obtener la información normativa japonesa, consulte la cláusula de exención de responsabilidad RSJ-C-02-003 para el mercado japonés.

Número SRN europeo

Se ha expedido a RaySearch Laboratories AB (publ) el número de registro único (SRN, por sus siglas en inglés] SE-MF-000001908, según lo requerido por el Reglamento (UE) 2017/745 sobre productos sanitarios.

3 INFORMACIÓN NECESARIA PARA UN FUNCIONAMIENTO SEGURO

En este capítulo se proporciona la información necesaria para realizar un uso seguro del sistema RayPlan 2023B.

Nota: Cabe recordar que pueden distribuirse notas de la versión de seguridad adicionales

por separado un mes después de la instalación del software.

Nota: Al utilizar RayPlan con RayCare, las versiones de los productos deben ser

compatibles. Utilice únicamente RayPlan 2023B con RayCare 2023By los paquetes de servicio de RayCare 2023B validados posteriormente. Compruebe las versiones

del paquete de servicio con el servicio RaySearch.

En este capítulo

Este capítulo contiene las siguientes secciones:

3.1	Precauciones de seguridad	p. 26
3.2	Importación de datos del paciente	p. 72
3.3	Datos de entrada	p. 72
3.4	Formato de visualización	p. 72

PRECAUCIONES DE SEGURIDAD 3.1

Tenga en cuenta las advertencias siguientes para un funcionamiento seguro del sistema RayPlan

En esta sección

Esta sección contiene los siguientes apartados:

3.1.1	Avisos sobre la responsabilidad del usuario	p. 27
3.1.2	Avisos sobre instalación de secuencias de comandos	p. 34
3.1.3	Avisos sobre el uso general del sistema	p. 35
3.1.4	Avisos sobre la importación en formato DICOM	p. 37
3.1.5	Avisos sobre la exportación en formato DICOM	p. 39
3.1.6	Avisos sobre cálculo de dosis	p. 41
3.1.7	Avisos sobre modelado del paciente	p. 52
3.1.8	Avisos sobre la planificación del tratamiento	p. 54
3.1.9	Avisos sobre la planificación de TomoHelical y TomoDirect	p. 56
3.1.10	Advertencias sobre la planificación del tratamiento de CyberKnife	p. 57
3.1.11	Advertencias sobre la planificación del tratamiento de braquiterapia	p. 58
3.1.12	Avisos sobre evaluación de la dosis	p. 63
3.1.13	Avisos sobre el comisionado del haz	p. 64
3.1.14	Avisos sobre control de calidad	p. 70
3.1.15	Avisos sobre la RayPlan Storage Tool (Herramienta de almacenamiento de RayStation)	p. 70

3.1.1 Avisos sobre la responsabilidad del usuario

ADVERTENCIA:

Garantice una formación adecuada. La organización debe asegurarse de que las personas autorizadas para realizar las funciones de planificación de tratamiento reciban la formación adecuada para desempeñar dichas funciones. Este software debe ser utilizado únicamente por personas autorizadas para realizar tareas de planificación de tratamiento y que cuenten con la formación adecuada en técnicas de planificación de tratamientos. Lea detenidamente todas las instrucciones antes de usarlo. El usuario se responsabiliza del uso clínico correcto y de la dosis de radiación prescrita. [508813]

ADVERTENCIA:

Calidad de los datos introducidos. Tenga siempre en cuenta que la calidad del resultado depende en gran medida de la calidad de los datos introducidos. Cualquier irregularidad en los datos importados o duda sobre las unidades de datos introducidos, de identificación, de orientación de la imagen o de calidad de cualquier índole debe investigarse minuciosamente antes de utilizar los datos. (508811)

ADVERTENCIA:

Revisión y aprobación del plan. Todos los datos del plan de tratamiento deben revisarse minuciosamente y ser aprobados por una persona cualificada antes de utilizarlos en el tratamiento con radioterapia. Es posible que el uso de un plan (conjunto de haces) que sea "óptimo" en cuanto a los objetivos de optimización resulte inapropiado para el uso clínico. (508826, 508814)

Los modelos de haz deben validarse antes del uso clínico. Es responsabilidad del usuario validar y poner en servicio todos los modelos de haz antes de que se utilicen para crear planes de tratamiento clínico de radioterapia de haz externo.

RayPlan se ha desarrollado para el uso por parte de profesionales en oncología radioterápica capacitados. Hacemos hincapié en que los usuarios cumplan las recomendaciones publicadas en AAPM TG40, TG142, TG53, TG135, IAEA TRS 430, IAEA TRS 483 y otros estándares para garantizar planes de tratamiento precisos.

La exactitud de la dosis calculada depende directamente de la calidad del modelo de haz. La insuficiencia del modelo de haz puede producir desviaciones entre la dosis aprobada y administrada. Todos los valores de los parámetros y controles de calidad de los planes serán revisados y aprobados por médicos cualificados. El cálculo de la dosis debe validarse para todas las máquinas de TC puestas en servicio.

- La dosis calculada se validará para todas las situaciones clínicas relevantes, incluidas, entre otras, una variación de SAD, SSD, tamaño de campo, forma de campo, posición fuera del eje (X, Y y diagonal), tipo de colimación, grado de modulación, dosis de fuga (variación en MU/ Gy o NP/Gy), ángulos de mesa/gantry (brazo)/colimador, conjuntos de nodos de CyberKnife, composición material del paciente/maniquí y geometría del material del paciente/maniquí.
- Las limitaciones conocidas se describen en RSL-D-RP-2023B-REF, RayPlan 2023B Reference Manual. Deben identificarse los límites adicionales del funcionamiento de cada modelo de haz durante la validación y cumplirse durante la planificación.

Para los fotones:

Se debe tener especial cuidado antes de utilizar RayPlan con láminas del MLC inferiores a 5 mm, materiales que difieren de los materiales habituales del paciente, bloques, conos circulares pequeños, cuñas (en especial, cuñas fuera del eje), planes de VMAT complejos, planes de rotación con tamaños de campo pequeños, planes de mARC de Siemens y planes de arco de ondas, especialmente con rotaciones de anillo superiores a 15 grados.

A tener en cuenta:

- un modelo de haz validado para 3D-CRT no es necesariamente adecuado para planes de IMRT.
- un modelo de haz validado para SMLC no es necesariamente adecuado para planes de DMLC.
- un modelo de haz validado para SMLC o DMLC no es necesariamente adecuado para planes de VMAT.

- un modelo de haz validado para VMAT no es necesariamente adecuado para los planes creados con la secuenciación de VMAT de ventana deslizante.
- Un modelo de haz modelado para un motor de dosis de fotones (Cono colapsado o Monte Carlo) no es adecuado para el otro motor de dosis sin adaptación de los parámetros del modelo de haz.

La validación debe realizarse para cada técnica de tratamiento seleccionada mediante el modelado en 3D de haces o RayPlan. Para los LINAC del brazo en C y de CyberKnife, consulte las advertencias 9356 y 3438. Para los equipos de tratamiento de TomoTherapy, consulte también la advertencia 10172.

Para electrones:

La validación debe incluir geometrías relevantes del aplicador, tamaños de campo sin recortes, tamaños de campo y formas de campo sin recortes, orientaciones de formas de campo para aplicadores rectangulares, materiales y espesores de recorte, espacios de aire hacia el isocentro y rangos en agua de D50 según la energía de haz nominal. Solo se admiten los recortes de Cerrobend con bordes rectos, es decir, paralelos a la línea del eje del haz.

[4001]

ADVERTENCIA:

Los modelos de braquiterapia deben validarse antes del uso clínico. Los modelos de fuentes de braquiterapia y las configuraciones de aplicaciones deben validarse antes del uso clínico.

Es responsabilidad del usuario validar todos los modelos de fuentes de braquiterapia y configuraciones de aplicaciones antes del uso clínico; consulte las advertencias 283358, 283879 para obtener más información.

(285635)

Puesta en servicio del equipo TomoTherapy. Al poner en servicio un equipo TomoTherapy, la mayoría de parámetros se leen desde iDMS y solo se prevén pequeños cambios en el modelo del equipo en RayPlan Physics. El perfil transversal, los factores de campo de fluencia de la mordaza y las compensaciones de latencia de lámina se sobrescriben en este proceso y es posible que deban actualizarse.

Tenga en cuenta que, en el caso de los equipos TomoTherapu, las curvas de dosis calculadas en el módulo Beam commissioning (Puesta en servicio del haz) se normalizan frente a las curvas medidas; es decir, las curvas de dosis medidas y calculadas coincidirán en el resultado, independientemente del resultado del modelo de haz. Por lo tanto, es necesario ajustar y verificar el resultado del modelo para todas las anchuras de campo con haces TomoHelical. Para obtener más información, consulte la RSL-D-RP-2023B-BCDS, RayPlan 2023B Beam Commissioning Data Specification.

Tenga también en cuenta que los filtros del MLC no forman parte del cálculo de la curva de dosis en el módulo Beam commissioning en RayPlan Physics y su uso solo puede verificarse con haces TomoHelical o TomoDirect.

El cálculo de la dosis debe validarse para el rango pertinente de los campos de tratamiento clínicos antes del uso clínico. Además de lo indicado en la advertencia 4001, la validación incluirá diferentes tamaños de mordaza y modos, tiempos de proyección, fracciones de apertura y pasos.

[10172]

ADVERTENCIA:

Detección de colisiones para CyberKnife. La detección de colisiones realizada en RayPlan no garantiza que siempre se detecten colisiones. Antes de la administración, el usuario está obligado a validar que el sistema de administración realizará la detección de colisiones.

(339623)

Comprobación de bloques y recortes. Compruebe siempre que los bloques y los recortes de los haces de electrones creados en los módulos de diseño de haces sean físicamente realizables. No se pueden definir limitaciones de fabricación para los bloques en RayPlan.

Compruebe siempre el bloque creado frente a la impresión de la apertura del bloque. [508816]

ADVERTENCIA:

Compruebe la escala de impresión de bloques y recortes. Los ajustes de impresión determinarán el tamaño real del bloque o el recorte en la impresión. Antes de utilizar la impresión de bloques o recortes para la fabricación o verificación de bloques o recortes, compruebe siempre que la escala de los ejes X e Y sean iguales y que 1 cm en la escala de verificación corresponda a 1 cm utilizando una regla. (508818)

ADVERTENCIA:

Comprobación de la ROI/POI. Revise siempre todas las regiones de interés (ROI) y puntos de interés (POI) detenidamente antes de utilizarlos para planificar o evaluar un tratamiento. (508820)

Revise las proyecciones en 4DCT. El usuario revisará el conjunto de imágenes resultantes de una proyección en 4DCT antes de utilizarlo para planificar o evaluar un tratamiento. El conjunto de imágenes proyectadas se comparará con los conjuntos de imágenes en el grupo en 4DCT para comprobar que las unidades Hounsfield (HU) u las densidades correspondientes sean las esperadas. Esto puede hacerse mediante el examen de los valores de las HU en las vistas de los pacientes y el cálculo de las dosis de evaluación en el módulo Plan Evaluation (Evaluación del plan).

Las propiedades geométricas del conjunto de imágenes proyectado, como la orientación, la posición y el tamaño, también se compararán con la 4DCT original. Esto puede realizarse al fusionar los conjuntos de imágenes proyectados con los conjuntos de imágenes en 4DCT originales en los módulos Structure Definition [Definición de estructuras] o Image Registration (Registro de imágenes) y comprobar que estén alineadas correctamente. (117566)

ADVERTENCIA:

Tabla de densidad específica de la imagen obtenida mediante el reescalado de la HU. Cuando se utiliza una tabla de densidad específica del conjunto de imágenes obtenida mediante el reescalado de la HU, es muy importante que el usuario revise correctamente la tabla de densidad resultante antes de utilizarla para el cálculo de la dosis. La tabla de densidad reescalada afectará directamente al cálculo de la dosis. (125272)

Configuración del paciente. Las instrucciones de cambio de mesa (desplazamiento de la sobremesa) para la colocación del paciente se muestran en el cuadro de diálogo Patient Setup (Configuración del paciente) y en el informe del plan.

La presentación predeterminada de cambio de mesa es "Patient" (Paciente); es decir, las instrucciones de cambio de mesa del cuadro de diálogo Patient setup (Configuración del paciente) se expresan en términos de direcciones anatómicas del paciente.

Si se desea, se puede cambiar la presentación de cambio de mesa a "Couch" [Mesa]; es decir, que las instrucciones de cambio de mesa del cuadro de diálogo Patient setup (Configuración del paciente) se expresen en términos de direcciones de la mesa. La presentación de cambio de mesa se cambia en la aplicación Clinic Settings.

Antes del uso clínico, compruebe siempre que el cambio de mesa mostrado en RayPlan y en el informe del plan sea el previsto y que esté en conformidad con la práctica clínica.

Tenga en cuenta que otra opción para la configuración del paciente es exportar el desplazamiento de mesa según el estándar DICOM. Esta opción puede seleccionarse en RayPlan Physics.

(9101)

ADVERTENCIA:

Revise el registro de marco de referencia antes del cálculo de la dosis. Es especialmente importante que los registros de marco de referencia que se hayan importado se revisen antes del cálculo de dosis en conjuntos de imágenes adicionales. (360380)

ADVERTENCIA:

Venta limitada en EE. UU. La legislación estatal y federal de los Estados Unidos limita la venta de este producto a médicos o bajo prescripción médica.

[4782]

Configuración de inicio de sesión único. Si se utiliza la configuración de inicio de sesión único en Clinic Settings (Ajustes clínicos), es posible que un usuario no autorizado se autentique en RayPlan si una estación de trabajo se deja desatendida. La autenticación se realiza en el nombre del usuario que ha iniciado sesión.

[578762]

ADVERTENCIA:

Verifique los códigos de accesorios. Se pueden introducir códigos accesorios para bloques de fotones y recortes de electrones. El usuario deberá verificar que el código de accesorio introducido en RayPlan coincide con el accesorio físico que se va a utilizar durante el tratamiento. RayPlan no invalidará automáticamente el código de accesorio si el bloque o el recorte se modifica en RayPlan. El bloque o el recorte no se invalidarán en RayPlan si se cambia el código de acceso. Es responsabilidad del usuario asegurarse de que se ha introducido el código de accesorio correcto y, si es necesario, actualizado.

[574934]

Avisos sobre instalación de secuencias de comandos 3.1.2

ADVERTENCIA:

Ajustes de visualización. Tenga en cuenta que el resultado visual del sistema RayPlan depende de la calibración y la resolución del monitor y de otros parámetros de hardware específicos. Asegúrese de que la salida del monitor sea adecuada para las tareas clínicas. (366562)

ADVERTENCIA:

Plataforma de hardware/software. La prueba de aceptación del entorno del sistema debe realizarse siempre que se cambie la plataforma de hardware o software. (366563)

Pruebas de instalación. El usuario debe añadir pruebas adicionales específicas para la instalación y configuración del sistema RayPlan en la organización del usuario. [366564]

ADVERTENCIA:

Uso de memoria GPU no ECC. Las GPU utilizadas para cálculos deben tener memoria RAM ECC y el estado ECC debe estar activado en la configuración del controlador de la GPU.

(8453)

ADVERTENCIA:

El cálculo de la dosis en la GPU puede verse afectado por actualizaciones del ordenador o de los controladores. El cálculo de la dosis en la GPU se debe revalidar después de cualquier modificación en la plataforma de hardware o software, incluidos los Service Packs del sistema operativo. Esto se puede realizar ejecutando el RSL-D-RP-2023B-SEAT, RayPlan 2023B System Environment Acceptance Test Protocol y las autocomprobaciones de todos los cálculos mediante el uso de la GPU.

(4039)

3.1.3 Avisos sobre el uso general del sistema

ADVERTENCIA:

Ejecución de varias instancias de RayPlan. Tenga especial cuidado cuando ejecute varias instancias de RayPlan. Asegúrese en todo momento de que está trabajando con el paciente correcto.

(3312)

Cálculo de la dosis independiente. Asegúrese de que el sistema de cálculo de la dosis independiente en uso sea realmente independiente. Hay sistemas que pueden parecer adecuados para el cálculo de dosis independientes que, en realidad, no son independientes en absoluto, ya que el motor de dosis es fabricado por RaySearch y utiliza el mismo algoritmo para el cálculo de la dosis de fotones y posiblemente también el mismo código que RayPlan (p. ej. Compass (IBA)).

[6669]

ADVERTENCIA:

Tenga cuidado al cambiar el modo de recuperación automática. Los datos de recuperación automática se almacenan en una base de datos o en un disco. Si el modo de recuperación automática está desactivado o si el área de almacenamiento se modifica mientras todavía hay datos de recuperación automática en el lugar de almacenamiento anterior, esos datos dejan de ser útiles y es posible que RayPlan no pueda eliminarlos. Los datos del lugar de almacenamiento anterior deben eliminarse manualmente.

[282521]

ADVERTENCIA:

Asignación de nombres a plantillas de informe. Las plantillas de informe creadas por el usuario no incluyen necesariamente toda la información sobre el paciente, el plan, los conjuntos de haces, etc. Por ejemplo, una plantilla de informe puede incluir solo el conjunto de haces actualmente seleccionado. Utilice una convención clara de asignación de nombres cuando cree las plantillas de informe. (5147)

Cambio del comportamiento de las prescripciones de conjuntos de haces con dosis de base. Desde RayPlan 11A, las prescripciones siempre prescribirán dosis para el conjunto de haces actual. Las prescripciones definidas en versiones de RayPlan anteriores a 11A que están relacionadas con el conjunto de haces + dosis de base han quedado obsoletas. Los conjuntos de haces con esas prescripciones no se pueden aprobar y la prescripción no se incluirá cuando el conjunto de haces se exporte en formato DICOM.

Desde RayPlan 11A, el porcentaje de prescripción ya no se incluye en los niveles de dosis de prescripción exportadas. En las versiones de RayPlan anteriores a 11A, el porcentaje de prescripción definido en RayPlan se incluyó en la dosis de prescripción objetivo exportada. Este aspecto se ha cambiado en la versión 11A para que solo la dosis prescrita definida en RayPlan se exporte como dosis de prescripción objetivo. Este cambio también afecta a las contribuciones nominales exportadas.

En versiones de RayPlan anteriores a 11A, la UID de referencia de la dosis exportada en planes de RayPlan se basaba en la UID de instancia SOP del Plan RT/Plan RT Ion. Esto se ha cambiado para que diferentes prescripciones puedan tener la misma UID de referencia de la dosis. Debido a este cambio, la UID de referencia de la dosis de los planes exportados mediante el uso de versiones de RayPlan anteriores a 11A se ha actualizado de modo que si el plan se reexporta se utilizará un valor diferente.

(344549)

3.1.4 Avisos sobre la importación en formato DICOM

ADVERTENCIA:

Integridad del conjunto de imágenes. DICOM no ofrece ninguna manera de comprobar que todos los cortes de imágenes en una serie de imágenes se incluyan. El usuario siempre debe realizar una comprobación manual después de la importación. (508830)

ADVERTENCIA:

Dosis importada. Una dosis importada para un plan aprobado se considerará automáticamente clínica. (508831)

Para la dosis importada, no se hacen suposiciones acerca del modo en que se calculó la dosis. La dosis no se invalidará cuando los datos utilizados para calcular la dosis en RayPlan no coincidan con los datos utilizados para calcular la dosis importada. Esto será aplicable incluso cuando el cálculo de la dosis importada se haya realizado originalmente en RayPlan. Por ejemplo, la dosis importada no se invalidará aunque el conjunto de estructuras se haya modificado con anulaciones de densidad o cambios en la ROI externa.

[224134]

ADVERTENCIA:

El esquema de fraccionamiento se descarta en la importación en formato DICOM.

Cuando un plan DICOM se importa a RayPlan, se descarta el esquema de fraccionamiento. Como resultado, los conjuntos de haces creados durante la importación siempre se configurarán para la administración secuencial, aunque el plan original indicara un patrón interlaminado.

Además, el orden de administración indicado por el orden del conjunto de haces puede no coincidir con el orden de administración previsto. Como consecuencia, después de la importación, no se realizarán actividades que dependan de un esquema de fraccionamiento correcto. (119127)

ADVERTENCIA:

Exportación después de utilizar un filtro de importación en formato DICOM. Evite exportar datos que se hayan modificado con filtros de importación en formato DICOM durante una importación en formato DICOM. Así se evitará la creación de diferentes archivos con la misma UID de DICOM. (508832)

ADVERTENCIA:

Ninguna indicación de error al utilizar Storage SCP. No hay ninguna indicación en RayPlan de que la importación de datos de pacientes mediante Storage SCP esté incompleta, por ejemplo, debido a un error en la sesión de transferencia o un error de escritura del archivo en el disco. (508833)

3.1.5 Avisos sobre la exportación en formato DICOM

ADVERTENCIA:

Error de exportación. Al exportar datos desde el sistema, compruebe siempre que la exportación se haya realizado correctamente. Si la exportación se interrumpe por causa de, por ejemplo, un fallo de hardware o un error del sistema operativo, elimine todos los datos exportados y vuelva a iniciar la exportación. (508805)

ADVERTENCIA:

Exportación del conjunto de estructuras RT en formato DICOM. La exportación en formato DICOM del conjunto de estructuras RT convertirá todas las ROI en contornos y no se incluirá ninguna parte de estructura que quede fuera del corte del conjunto de imágenes superiores o inferiores.

Esto se aplica a las geometrías de la ROI con representación de malla o vóxeles. Normalmente, estas geometrías se crean mediante segmentación basada en modelos o mediante herramientas de interacción de la ROI en 3D en RayPlan. La exportación en formato DICOM solo abarca los contornos en cortes de imágenes, lo que significa que las partes que se extienden fuera del primer o el último corte del conjunto de imágenes no se incluyen en la exportación. Por lo tanto, no serán idénticos después de una exportación/importación en formato DICOM y de que vuelvan a RayPlan o a un sistema externo. (508804)

ADVERTENCIA:

Los parámetros de tratamiento deben transferirse desde el sistema RayPlan con la exportación en formato DICOM. Asegúrese de que los puntos de control para un plan de tratamiento se exporten desde el sistema RayPlan con la exportación en formato DICOM. El usuario no debe transferir manualmente estos ajustes. (508803)

ADVERTENCIA:

Exportación en formato DICOM de los planes de Vero. Debe tener especial cuidado al exportar en formato DICOM un plan con múltiples isocentros al sistema Vero R&V. Es necesario realizar la exportación en formato DICOM dos veces, una con la casilla ExacTrac Vero marcada y otra con la casilla desmarcada. (125706)

Errores de transacción al exportar a iDMS. Si se produce algún error durante la exportación del plan, es posible que no haya ninguna indicación en RayPlan. El operador debe comprobar en iDMS el estado del paciente y el plan. (261843)

ADVERTENCIA:

Gestión de objetos DICOM con el mismo UID de la instancia de SOP. En ciertos casos, RayPlan puede producir objetos en formato DICOM con los mismos UID de la instancia de SOP pero con contenido diferente. Si se envían dos objetos con los mismos UID al mismo destino (por ejemplo, un sistema PACS), el resultado dependerá de la implementación del sistema receptor. El usuario debe comprobar manualmente que se utiliza el objeto correcto en la tarea correspondiente.

(404226)

3.1.6 Avisos sobre cálculo de dosis

Avisos sobre el cálculo de las dosis generales

Región de cálculo de dosis. La región de cálculo de dosis se limita a la intersección de la matriz de dosis y la región formada por ROI de cálculo de dosis. Los ROI de cálculo de dosis incluyen ROI externas, de soporte y de fijación, así como ROI de bolus asignadas a haces externos de fotones y electrones. No se tendrá en cuenta ninguna dosis en la región fuera de la región de cálculo de dosis.

Tratamiento de haz externo

En el caso de la radioterapia externa, toda la información importante de los datos de la imagen se omitirá fuera de la región de cálculo de la dosis. En todas las modalidades, excepto electrones, el volumen fuera de la región de cálculo de la dosis se trata como vacío en la transmisión de radiación (sin interacciones).

En los electrones, se utiliza aire en lugar de vacío, con dispersión y pérdida de energía en la transmisión de la radiación. RayPlan no podrá calcular una dosis correcta si alguna parte de un haz se interseca con datos de imagen que no están incluidos en la región de cálculo de la dosis. Esto podría ocurrir si las ROI de cálculo de la dosis no cubren todos los datos de imagen relevantes o si la matriz de dosis no abarca los volúmenes relevantes de las ROI de cálculo de la dosis.

Se esperan grandes errores en la dosis si cualquier parte del haz entra en una superficie de una ROI de cálculo de la dosis que no está cubierta por la matriz de dosis. También se espera un error en la dosis en los bordes de salida de la matriz de dosis si se utiliza una matriz de dosis demasiado pequeña, ya que no se tiene en cuenta la dispersión desde fuera de la matriz de dosis. No hay ninguna advertencia en RayPlan si la matriz de dosis no cubre la región adecuada en los bordes de salida.

Braquiterapia (motor de dosis TG43)

El cálculo de dosis de braquiterapia basado en TG43 es un modelo basado en datos que utiliza mediciones y simulaciones en agua. El cálculo de dosis no tiene en cuenta ninguna información material y trata todo el volumen como agua tanto dentro como fuera de la región de cálculo de dosis. Esto afecta de dos maneras a la región de cálculo de dosis:

- La dosis en la superficie de una ROI de cálculo de dosis puede ser incorrecta, ya que se asume un medio de dispersión infinito y se ignora la interfase de baja densidad.
- Si la matriz de dosis no cubre toda la ROI externa (o cualquier otra ROI de cálculo de dosis), la dosis seguirá siendo correcta en los bordes de la matriz de dosis, dado que todos los puntos de permanencia activos están dentro de la matriz de dosis. En RayPlan, no es posible calcular la dosis si hay puntos de permanencia activos fuera de la ROI externa. Dentro de la ROI externa, la matriz de dosis debe cubrir todos los puntos de permanencia activos, incluido al menos un margen de 3 cm para garantizar que se tengan en cuenta los valores de dosis

altos cercanos a las fuentes.

(9361)

ADVERTENCIA:

Asegúrese de que se ha asignado la ROI correcta como ROI externa. Compruebe siempre que la ROI externa cubra todas las ROI objetivo y OAR. Es posible que los histogramas dosis-volumen no se calculen correctamente si toda la ROI no está incluida en la ROI externa.

(9360)

ADVERTENCIA:

Asegúrese de que la matriz de dosis cubra todas las ROI previstas. Solo se incluye en el DVH y en el cálculo estadístico de la dosis la parte de una ROI cubierta por la matriz de dosis.

(9358)

ADVERTENCIA:

La resolución de la matriz de cálculo de dosis afecta a la dosis. Tanto el resultado como el tamaño de la dosis pueden verse afectados significativamente por la resolución y la alineación de la matriz de cálculo de dosis. Asegúrese de utilizar una matriz de cálculo de dosis adecuada teniendo en cuenta factores como, por ejemplo, el tamaño de campo, la modulación y la geometría de pacientes.

(2305)

Rellenado de píxeles. Es posible que la dosis calculada no sea correcta si la región utilizada para el cálculo de la dosis presenta rellenado de píxeles. Asegúrese de que las unidades Hounsfield de rellenado de píxeles coincidan con la densidad deseada o de añadir una sobrescritura de material a la región de rellenado de píxeles.

Si una imagen de TC excluye material que estará presente en el tratamiento y que se encuentra dentro de la región de dispersión de radiación, no se recomienda utilizar valores de rellenado de píxeles. En lugar de ello, añada una sobrescritura de material a cada material para incluirlos en el cálculo de la dosis. De lo contrario, podrían producirse errores en el cálculo de la dosis.

Si todo lo que es importante para la transmisión de radiación se encuentra dentro de la imagen de TC, pero la ROI externa cubre partes de la imagen con valores de rellenado de píxeles que corresponden a unidades Hounsfield de alta densidad, podrían producirse errores en el cálculo de la dosis.

[9354]

ADVERTENCIA:

Sobrescritura de material para varios conjuntos de estructuras. Si se define la sobrescritura de material para una ROI que no tiene ninguna geometría definida en el conjunto de imágenes utilizado, no se mostrará ninguna advertencia al calcular la dosis.

(9353)

ADVERTENCIA:

Uso de la densidad de TC para materiales de origen no humano. El cálculo de la dosis de RayPlan se ajusta para poder utilizarse con datos de TC para materiales que normalmente se pueden encontrar en el cuerpo humano. Para materiales de origen no humano, el uso de una sobrescritura de densidad, por lo general, será más preciso que el uso de información de datos de TC. Esto se aplica a las ROI de tipo soporte, fijación y bolus para estructuras de haz, así como implantes dentro del paciente. Asegúrese de que se ha asignado una sobrescritura de material a la ROI si se pretende sobrescribir la densidad de TC. No se mostrará ninguna advertencia antes del cálculo de la dosis si no se ha asignado ningún material.

[404666]

Las ROI de bolus se deben asignar a los haces. Las ROI de bolus se consideran propiedades del haz. Para utilizar una ROI de bolus para la transmisión de radiación y el cálculo de la dosis para un haz específico, se debe asignar expresamente a ese haz. Si se debe utilizar un bolus para todos los haces, se debe asignar a todos los haces de forma individual. Un bolus que no está asignado a ninguno de los haces de un plan no se incluirá de ningún modo en el cálculo de la dosis. [136280]

ADVERTENCIA:

Utilización de ROI de tipo fijación y soporte. Las ROI de tipo fijación y soporte están pensadas para utilizarse en regiones de soporte del paciente y dispositivos de fijación o inmovilización, y solo deben utilizarse en estructuras que están principalmente fuera del esquema del paciente. Utilice siempre otros tipos de ROI para la sobrescritura de material dentro de la ROI externa. Un pequeño solape con la ROI externa es aceptable si la ROI de fijación o soporte se encuentra principalmente fuera de la ROI externa. Es posible que el uso de ROI de tipo fijación o soporte que están principalmente dentro del esquema del paciente produzca errores en el cálculo de la densidad de la masa de los vóxeles en intersección tanto con la ROI externa como con las ROI de fijación/soporte. Consulte el *RSL-D-RP-2023B-REF*, *RayPlan 2023B Reference Manual* para obtener más información sobre estos efectos. [262427]

ADVERTENCIA:

Planificación de RM: asignación de la densidad aparente. Ray Plan La planificación basada únicamente en imágenes de RM depende de la asignación de la densidad aparente especificada por el usuario. Tenga en cuenta que en el caso de determinadas configuraciones o regiones, una asignación de densidad aparente con un material homogéneo producirá un error de dosimetría inaceptable. (254454)

ADVERTENCIA:

Planificación de RM: distorsión geométrica y campo de visión. Las imágenes de RM previstas para planificación deben tener una distorsión geométrica insignificante. RayPlan no incluye ningún algoritmo de corrección de distorsión. La imagen de RM debe cubrir el esquema del paciente. (261538)

Contraste de TC mejorado. Los agentes de contraste utilizados para realzar los conjuntos de imágenes de TC afectarán los valores de HU, lo que puede conducir a diferencias entre la dosis planificada y la administrada. Se recomienda al usuario que evite por completo el uso de conjuntos de imágenes de TC realzados con contraste para la planificación del tratamiento o que se asegure de que las sobrescrituras de material para las áreas de contraste se asignen correctamente.

[344525]

ADVERTENCIA:

Asegúrese de que las dosis calculadas con diferentes motores de dosis sean **compatibles.** La combinación o comparación de dosis calculadas con diferentes motores de dosis (por ejemplo, en respaldo, optimización simultánea, dosis de fondo, suma de dosis) debe realizarse con cuidado si la convención de dosis difiere entre algoritmos y el plan es sensible a la dosis en materiales con alto número atómico.

Los motores de dosis de electrones de Monte Carlo informan de la dosis referida a agua con la transmisión de radiación en medio. El motor de dosis de cono colapsado de fotones calcula la dosis al agua con la transmisión de radiación en agua de diferente densidad, una propiedad que se encuentra entre la dosis referida a agua y la dosis referida a medio cuando se calcula en medio. El motor de dosis de fotones de Monte Carlo para RayPlan 2023B informa de las dosis referidas a medio con transmisión de radiación en medio. Cuando se transmite en medio, se ha descubierto que las diferencias entre la dosis referida a agua y la dosis referida a medio en el caso de los fotones son pequeñas para los tejidos que no son el hueso (1-2 %), pero la diferencia puede llegar a ser relativamente grande para el hueso (10 %) u otros materiales con alto número atómico.

La convención de dosis para dosis importadas es desconocida para RayPlan, y debe gestionarse con cuidado si el plan es susceptible a la dosis en materiales con alto número atómico y si la dosis se usa como dosis de fondo o para la imitación de dosis. [409909]

Avisos sobre el cálculo de las dosis de electrones

ADVERTENCIA:

La incertidumbre estadística máxima permitida no afecta a dosis clínicas Monte Carlo ya calculadas. Al cambiar la incertidumbre estadística máxima permitida en Clinic Settings para dosis clínicas de electrones Monte Carlo, tenga en cuenta que las dosis ya calculadas no se verán afectadas. Por lo tanto, las dosis calculadas antes del cambio pueden marcarse como clínicas aunque tengan una incertidumbre estadística que diera como resultado una dosis clínica si se calcularan.

(9349)

ADVERTENCIA:

Cálculo de la dosis de electrones para tamaños de recorte pequeños. Se ha notificado una precisión limitada en el resultado del cálculo de tamaños de recortes para el cálculo de dosis de electrones de RayPlan. Se ha notificado una diferencia entre el resultado medido y calculado de más del 3% para tamaños de recortes de 4 x 4 cm² y de más del 5% para tamaños de recortes de 2 x 2 cm².

El usuario tiene que conocer esta limitación y verificar exhaustivamente el resultado de la dosis de electrones calculada para tamaños de recorte pequeños.

[142165]

Avisos sobre el cálculo de las dosis de fotones

ADVERTENCIA:

Cálculo de dosis de fotones mediante CBCT. El cálculo de dosis mediante un sistema de imagen de CBCT puede ser menos preciso que utilizar un sistema de imagen de TC, ya que hay un conjunto limitado de niveles de densidad especificado para una CBCT en comparación con lo normalmente especificado para una TC. La precisión del cálculo de la dosis mediante CBCT depende del ajuste de la escala de CBCT a la densidad y de lo bien que la densidad real se trace frente a la densidad de CBCT seleccionada. La clínica debe validar esto antes de utilizar las dosis de CBCT para tomar decisiones clínicas. El cálculo de la dosis en los conjuntos de datos de imágenes de CBCT no se admite para los electrones.

(9356)

Asignación de una tabla de densidad de CBCT. Para el uso directo de la información de CBCT sin procesar en el cálculo de dosis, RayPlan utiliza una tabla de densidad de CBCT específica de la imagen. Dado que existe un conjunto limitado de niveles de densidad especificados para una CBCT en comparación con lo que normalmente se especifica para una TC, el cálculo de la dosis en las imágenes de CBCT puede ser menos preciso que el uso de imágenes de TC o imágenes de CBCT convertidas. La precisión del cálculo de la dosis utilizando CBCT con una tabla de densidad asignada está relacionada con la sintonía respecto a esta tabla y en función de cómo la densidad real en el paciente se corresponde con las densidades seleccionadas en la tabla.

Revise siempre la tabla de densidad antes de usarla en el cálculo de dosis. La revisión se puede realizar mediante la comprobación de puntos de sectores seleccionados en el cuadro de diálogo Create density table for CBCT (Crear una tabla de densidad para CBCT), donde se visualiza el efecto de la tabla de densidad.

(9355)

ADVERTENCIA:

La incertidumbre estadística máxima permitida no afecta al estado clínico de la dosis Monte Carlo ya calculada. Al cambiar la incertidumbre estadística máxima permitida en Clinic Settings para dosis clínicas de fotones Monte Carlo, tenga en cuenta que las dosis ya calculadas no se verán afectadas. Por lo tanto, las dosis calculadas antes del cambio pueden marcarse como clínicas aunque tengan una incertidumbre estadística que daría como resultado una dosis clínica si se calcularan.

(399)

Asimetría en los perfiles Y de CyberKnife para campos colimados del MLC que no se tienen en cuenta en el modelado de haces. Para los campos colimados del MLC más grandes, los perfiles Y del LINAC de CyberKnife muestran una asimetría intrínseca, lo que no se tiene en cuenta en el modelado de haces. Las diferencias entre las dosis administradas y calculadas pueden aparecer para los campos colimados directamente por una de las mordazas Y fijas (las placas de protección laterales del MLC) o por unos pocos pares de láminas cerradas junto a una de las mordazas Y.

El usuario debería tener en cuenta esta limitación y debería proceder con sumo cuidado al examinar este comportamiento durante la puesta en servicio de RayPlan y durante el control de calidad específico del paciente posterior.

(344951)

ADVERTENCIA:

Distancia entre ángulos del brazo de arco para planos de rotación de objetivos pequeños fuera del eje. La distancia del brazo de arco determina el número de direcciones utilizadas durante el cálculo de la dosis para planos de rotación. Se ha encontrado una sobreestimación de la dosis de alrededor del 3,5 % en algunos planos con un objetivo pequeño que esté fuera del eje respecto a la dirección en el plano para haces de arco, cuando se utiliza una distancia de brazo de 4 grados en comparación con una de 2 grados. No se observa el mismo efecto en los objetivos centrales pequeños. Utilice una distancia entre ángulos de brazo de 2 grados al crear dichos planos de arco.

(723988)

Advertencias sobre el cálculo de dosis de braquiterapia

ADVERTENCIA:

Validez del cálculo de dosis basado en TG43. El cálculo de dosis basado en TG43 parte de una serie de suposiciones: (1) todos los tejidos circundantes a las fuentes son equivalente de agua; (2) cada fuente debe estar rodeada por un volumen de paciente lo suficientemente grande para mantener la validez del conjunto de datos de consenso; y (3) cualquier efecto de protección puede ignorarse. Las situaciones en las que no se cumplen estas condiciones supuestas son: planes en los que la fuente está cerca de cavidades de aire o implantes metálicos, configuraciones que incluyen protección del aplicador y fuentes colocadas cerca de la piel.

El usuario debe conocer estos supuestos y el modo en que influirán en el cálculo de dosis.

(283360)

ADVERTENCIA:

Corrección de los parámetros de TG43. La precisión del cálculo de la dosis de braquiterapia basado en TG43 depende en gran medida de la corrección de los parámetros de TG43 utilizados. Si está disponible para la fuente actual, se recomienda encarecidamente utilizar los datos de consenso publicados del informe HEBD (Perez-Calatayud et al., 2012) o informes similares. La resolución de la función de dosis radial y la función de anisotropía deben seguir las recomendaciones publicadas en el informe TG43u1 (Rivard et al., 2004) y en el informe HEBD. Es responsabilidad del usuario verificar que los parámetros de TG43 se hayan introducido correctamente, independientemente de si los datos los ha introducido el usuario o el fabricante. El usuario también debe comprobar la exactitud del algoritmo de cálculo de dosis usando los parámetros introducidos.

(283358)

Dosis de tránsito en braquiterapia. Las dosis administradas entre las posiciones de permanencia, así como las dosis de entrada y salida desde y hacia el aplicador de carga diferida, no se tienen en cuenta en el cálculo de dosis. Estas dosis de tránsito dependen de la intensidad de la fuente y del movimiento real (velocidad y aceleración) de la fuente dentro de los canales de braquiterapia HDR. Las dosis de tránsito pueden alcanzar niveles clínicamente significativos en algunos casos, especialmente para intensidades de la fuente elevadas, movimientos de la fuente lentos y ocasiones donde hay un gran número de canales de braquiterapia HDR, lo que provoca que la fuente pase una parte significativa del tiempo en tránsito. El usuario debe ser consciente de esta limitación y evaluar en qué casos las dosis de tránsito podrían convertirse en un problema para cada aplicador de carga diferida y fuente.

(331758)

ADVERTENCIA:

Administración de braquiterapia HDR en campos magnéticos. Si el tratamiento de braquiterapia HDR se realiza en un campo magnético (por ejemplo, se administra durante una RM), puede haber grandes discrepancias entre la dosis administrada y la dosis calculada usando el formalismo TG43. La derivación de los parámetros de TG43 publicados no incluye campos magnéticos y, por lo tanto, cualquier efecto sobre la distribución de la dosis no se tendrá en cuenta en el cálculo de la dosis. El usuario debe ser consciente de esta limitación si el tratamiento se va a administrar en un campo magnético. Se debe actuar con especial precaución con las fuentes de ⁶⁰Co y las intensidades de campo magnético superiores a 1,5 T.

(332358)

317 Avisos sobre modelado del paciente

ADVERTENCIA:

Generación y modificación automáticas de ROI. Verifique siempre el resultado de la generación y modificación automáticas de ROI. Se debe prestar especial atención a la elección del modelo de órgano adecuado para el paciente en función de las propiedades características del modelo, como la zona del cuerpo, la posición del paciente y la modalidad de la imagen. Esto se aplica a todos los métodos de segmentación automática, incluida la segmentación basada en modelos y la segmentación basada en atlas.

Tenga en cuenta que no podrá utilizarse ninguna segmentación automática de órganos para identificar lesiones en RayPlan.

(9662)

ADVERTENCIA:

Registro automático de imágenes. Compruebe siempre el resultado del registro automático de imágenes. (360374)

ADVERTENCIA:

Espaciado de cortes del conjunto de imágenes y extrapolación de contornos. En RayPlan, la reconstrucción en 3D de una ROI a partir de contornos presupone que el primer y el último contorno se extienden la mitad de la distancia de un corte. Por tanto, el primer y el último contorno de una ROI se extrapolan la mitad de la distancia de un corte desde los contornos más externos. Tenga en cuenta que no existe ningún límite para esta extrapolación, ya que siempre es la mitad de la distancia de un corte. En los conjuntos de imágenes habituales con una distancia de corte de unos 2-3 mm, esto significa que RayPlan extrapola 1-1,5 mm, pero en un conjunto de imágenes con un espaciado de corte amplio, esta extrapolación puede causar un comportamiento inesperado. Por tanto, se recomienda encarecidamente utilizar siempre TC de planificación reconstruidas con un espacio de corte inferior o igual a 3 mm. [125440]

Ausencia de contornos de ROI intermedios. Si faltan contornos de ROI intermedios, el espacio NO se rellenará automáticamente.

Si hay cortes de imágenes con contornos no disponibles entre los cortes más externos de la geometría de una ROI, no se realiza ninguna interpolación automática entre los contornos. Esto se aplica tanto a contornos importados como a contornos generados en RayPlan. (360375)

ADVERTENCIA:

Geometría de una ROI que se extiende más allá del conjunto de imágenes. Cuando se lleva a cabo una operación de contornos (p. ej., dibujado manual, simplificación de contornos, etc.) en una ROI que se extiende más allá de la parte superior o inferior del conjunto de imágenes, la ROI se cortará por los límites superior e inferior del conjunto de imágenes. [240137]

ADVERTENCIA:

Creación de material común con nueva composición elemental. Es posible definir un material que no refleja un material físicamente razonable con respecto a la combinación de densidad de masa y composición elemental. Tenga cuidado con el orden de los números atómicos y los pesos para asegurarse de que ambos tengan el mismo orden. Los motores de dosis en RayPlan están optimizados para materiales similares a los que se encuentran en el cuerpo humano. El uso de materiales fuera de ese dominio puede disminuir la precisión de la dosis.

(274572)

318 Avisos sobre la planificación del tratamiento

ADVERTENCIA:

Evitación de colisiones: compruebe siempre la posición del paciente, los ángulos del brazo y los de la mesa (o los ángulos anulares en las máquinas en las que la rotación de la mesa se reemplaza por la rotación anular). La configuración paciente/máquina debe comprobarse manualmente en todos los haces a fin de evitar colisiones que provoquen lesiones al paciente o daños al equipo. La vista de la sala no se utilizará para comprobar que no se producirán colisiones con la configuración actual de paciente/máquina. Respecto a los tratamientos TomoTherapy, véase la advertencia 254787 (Evitación de colisiones en TomoHelical y TomoDirect).

[3310]

ADVERTENCIA:

Seleccione una posición de tratamiento correcta. Asegúrese de que se ha seleccionado la posición de tratamiento correcta (primero la cabeza o primero los pies) para el paciente en el momento de crear el plan de tratamiento. La posición de tratamiento seleccionada afectará la manera en que los haces están orientados en relación al paciente. Una especificación incorrecta puede hacer que no se trate al paciente de forma correcta.

Tenga en cuenta que se puede seleccionar una posición de tratamiento distinta de la posición del paciente en los datos de la TC (posición de escaneado del paciente) al crear un plan. Utilice esta opción solo si el paciente debe tratarse en una posición distinta de la que se utilizó durante el escaneado. (508900)

ADVERTENCIA:

Ángulo del colimador para VMAT, arco conformado y arco estático. Los ángulos del colimador de 0, 90, 180 y 270 grados deberían evitarse, si es posible, para los haces de arco, ya que esto puede provocar una fuga de la dosis acumulada. Los ángulos del colimador deberían desplazarse al menos 10 grados con respecto a los valores anteriormente indicados. La fuga de la dosis acumulada debido a la transmisión entre láminas no se reproduce con el cálculo de la dosis clínica. Tenga esto en cuenta al tomar decisiones clínicas. Es probable que los pares de láminas cerradas se coloquen en medio de la proyección objetivo, lo que puede hacer que la fuga se acumule en el centro del objetivo en estos ángulos del colimador.

[3305]

Cálculo de la dosis de estructuras pequeñas. Cuando se utilizan estructuras pequeñas, es importante tener en cuenta que pueden verse afectadas significativamente por los efectos de la discretización. Por lo tanto, es importante elegir la resolución de la matriz de cálculo de dosis en función de las estructuras más pequeñas que necesiten ser reconstruidas. Cuando se reconstruyen estructuras para visualización en las vistas de los pacientes, se utiliza una matriz de alta resolución específica de la estructura para lograr una representación precisa de la estructura. Sin embargo, en el caso de la optimización del plan, el cálculo de la dosis y las estadísticas de la dosis, las estructuras se reconstruuen en la matriz de cálculo de dosis. Si los vóxeles de la matriz de cálculo de dosis son demasiado grandes, es posible que la reconstrucción represente las estructuras de manera imprecisa. Además, se producirá una discrepancia entre las estructuras visualizadas y lo que realmente se utiliza para calcular la dosis. Por tanto, se recomienda encarecidamente utilizar una resolución de matriz de cálculo de dosis de manera que el tamaño de un vóxel de la matriz de cálculo de dosis no supere la mitad del tamaño de la estructura más pequeña que se vaya a reconstruir.

[254767]

ADVERTENCIA:

Visualización de materiales. La vista de material muestra las densidades de vóxel combinadas a partir de los valores de la TC y la sobrescritura de material. Todas las ROI de sobrescritura de material dentro de la ROI externa y las ROI de tipo soporte y fijación se incluyen en este cálculo de densidad. Tenga en cuenta que las ROI de tipo bolo no se incluyen en la vista. Aparte de las ROI de bolo, los valores de densidad mostrados son las densidades de vóxel utilizadas para el cálculo de la dosis.

Se aconseja al usuario que revise cuidadosamente la distribución de la densidad del material (densidad o distribución de las SPR) para asegurarse de que la entrada para el cálculo de la dosis es correcta.

2638

El cabeceo y el alabeo de la mesa influyen en la geometría del paciente. Al planificar o tomar imágenes con cabeceo o alabeo de la mesa, tenga en cuenta que no existe ninguna validación en RayPlan sobre que la rotación del paciente en la imagen coincida con la rotación del paciente en el plan de tratamiento.

(68044)

3.1.9 Avisos sobre la planificación de TomoHelical y TomoDirect

ADVERTENCIA:

Prevención de colisiones en TomoHelical y TomoDirect. Después de ajustar el isocentro, asegúrese siempre de que el paciente quepa cómodamente en la mesa del tubo del brazo. Las vistas en 2D y 3D incluyen una visualización específica de FOV y tubo del equipo que puede utilizarse para comprobar que no se produzcan colisiones. No utilice la vista de sala para comprobar la prevención de colisiones. (254787)

ADVERTENCIA:

Tratamiento TomoDirect mediante la mesa. La mesa TomoTherapy consiste en un palé inferior fijo y un palé superior móvil. La posición del palé superior durante la administración puede ser diferente de la posición de planificación debido a los ajustes de configuración lateral del paciente. Esto puede influir en la dosis para los haces que entran a través o cerca del borde del palé superior. Las correcciones diarias del alabeo del brazo también pueden alterar la ruta del haz a través de la mesa. Debe evitarse la creación de planes TomoDirect con una gran fracción de la dosis de los haces que entran a través o cerca del borde del palé superior.

[5062]

ADVERTENCIA:

BD de pacientes única por iDMS. Una iDMS solo debe recibir datos de una BD de pacientes para prevenir errores de consistencia. El bloqueo de un paciente en una BD de pacientes garantiza que no se exporte el mismo paciente a iDMS desde dos instancias de RayPlan al mismo tiempo.

[261846]

Sincronización del movimiento para planes TomoHelical. Cuando se utiliza sincronización del movimiento para un plan TomoHelical, se crean tres ángulos de imagen (0, 90, 270 grados) como punto de partida. El usuario tiene que editar manualmente los ángulos, evaluarlos y asegurarse de que sean adecuados para las imágenes de los objetivos seleccionados que seguir.

En la aprobación o la exportación, los ángulos se validan para garantizar que no infrinjan algunas restricciones. Por ejemplo, todos los ángulos deben estar separados por un mínimo de 30 grados. No obstante, tenga en cuenta que no hay validaciones para garantizar que los ángulos sean adecuados para su uso en el seguimiento de objetivos.

[143545]

ADVERTENCIA:

No utilice "Fiducial" en títulos de ROI/POI cuando use TomoHelical con Synchrony (Sincronía). En los planes de TomoHelical que utilizan seguimiento y tiempo real y soporte para la administración del tratamiento, no se debe usar "Fiducial" en el título de la ROI/el POI. El sistema de administración del tratamiento identifica los fiduciales que hay que seguir mediante esta convención de denominación. El uso del nombre "Fiducial" en títulos de ROI/POI puede provocar problemas en el lado de la administración con ROI/POI incorrectos establecidos como seguidos, así como títulos de ROI/POI repetidos. El uso fiducial incorrecto puede provocar un fallo en la administración del plan en el equipo.

[282912]

3.1.10 Advertencias sobre la planificación del tratamiento de CyberKnife

ADVERTENCIA:

Una ROI de margen de 1 vista creada no depende de la técnica de seguimiento seleccionada o de la ROI de origen. Una vez creada una ROI de margen de 1 vista, no depende de la técnica de sincronización de movimiento del conjunto de haces, ni de la ROI de origen. Si se cambia la sincronización de movimiento o se actualiza la ROI de origen, vuelva a generar la ROI de margen.

(341543)

3.1.11 Advertencias sobre la planificación del tratamiento de braquiterapia

ADVERTENCIA:

Validación de las propiedades de configuración de la aplicación antes del uso clínico. Es responsabilidad del usuario validar que los parámetros definidos para la configuración de la aplicación representen correctamente el aplicador correspondiente antes del uso clínico. En particular, debe verificarse la posición correcta de los puntos de permanencia.

(283879)

ADVERTENCIA:

Límites del aplicador de carga diferida. Los límites especificados para un aplicador de carga diferida en RayPlan Physics deben especificarse dentro de los límites del aplicador de carga diferida real. En particular, los límites de tiempo de permanencia especificados en RayPlan Physics deben coincidir con los tiempos de la tasa de kerma en aire de referencia de la fuente actual. Los límites especificados en RayPlan Physics deben establecerse de modo que los límites reales del aplicador de carga diferida se cumplan también después de que los tiempos de permanencia se hayan vuelto a escalar para compensar la diferencia entre la tasa de kerma en aire de referencia y la tasa de kerma en aire real en la administración del tratamiento.

[283881]

ADVERTENCIA:

Número de fuentes. En un conjunto de haces de braquiterapia, solo es posible tener una fuente definida.

[283883]

Posicionamiento de los puntos de permanencia de la braquiterapia. Que la distribución de la dosis en el paciente sea correcta depende en gran medida de la precisión del posicionamiento de los canales y los puntos de permanencia. Es responsabilidad del usuario verificar que los canales estén bien posicionados para cada paciente y que la representación de los puntos de permanencia dentro de los canales sea correcta.

[283361]

ADVERTENCIA:

Dosis notificada para la braquiterapia. Todos los valores de dosis en RayPlan se notifican como dosis física absorbida para la braquiterapia. Se recomienda realizar una evaluación clínica de los planes de tratamiento de braquiterapia utilizando la dosis EQD2 ponderada biológicamente además de la dosis absorbida. Actualmente, no hay una visualización directa de las dosis EQD2 en la interfaz gráfica de usuario y es responsabilidad del usuario convertir los valores de dosis notificados a dosis EQD2.

[284048]

ADVERTENCIA:

Suma de dosis de braquiterapia y radioterapia de haz externo. Los planes de tratamiento de braquiterapia suelen tener dosis de fracción significativamente más altas que los planes de radioterapia de haz externo. Cuando hay grandes diferencias en las prescripciones de dosis fraccionadas, las dosis no deben sumarse directamente sin tener en cuenta los efectos radiobiológicos (mediante conceptos como BED y EQD2).

[283362]

Limitaciones del formalismo EQD2. La dosis equivalente en fracciones de 2 Gy (EQD2) implementada en RayPlan se basa en el modelo estándar lineal-cuadrático (LQ), que tiene las siguientes implicaciones que el usuario debe conocer:

- El modelo asume la reparación completa entre fracciones y no tiene en cuenta la repoblación de las células tumorales. Por lo tanto, en los casos en que no se logre una reparación completa entre fracciones, los efectos biológicos no se modelarán adecuadamente. Además, cuando la repoblación de células tumorales se vuelve importante, por ejemplo, debido a interrupciones en el tratamiento o para tumores que proliferan rápidamente, la dosis de EQD2 no será del todo correcta.
- Las incertidumbres en el modelo LQ son mayores para dosis prescritas bajas (por debajo de 1 Gu) y dosis prescritas altas (8 Gu) por fracción. En consecuencia, las dosis de EQD2 son menos fiables para dichos niveles de dosis
- Las dosis de EQD2 dependen en gran medida de los valores de α/β utilizados en la evaluación. Se aconseja al usuario que considere un rango de valores de α/β en la evaluación e investigue los peores escenarios posibles para EQD2, especialmente cuando la tolerancia normal del tejido puede verse afectada.
- Las dosis de EQD2 no dependen linealmente de la dosis física, lo que significa que los puntos fríos y calientes se mejoran al traducir la dosis física a EQD2 y los gradientes en la distribución de EQD2 son más altos que en la distribución de dosis físicas. Por lo tanto, se recomienda no evaluar la EQD2 en un solo punto, sino utilizar evaluaciones multipunto para tener en cuenta las diferencias a lo largo del volumen. Además, cuando la evaluación de EQD2 se basa en volúmenes en el DVH, se recomienda utilizar más de un objetivo clínico. Por ejemplo, un objetivo clínico en EQD2 (D90) podría complementarse con objetivos clínicos para otros volúmenes acumulados que superen el 90 % del volumen total de ROI. Los efectos de volumen se pueden analizar más a fondo en la distribución completa de EQD2, como se obtiene del cálculo de EQD2 en la Evaluación del plan.

(406776)

Interpretación de distribuciones de EQD2. Una distribución de EQD2 difiere de la distribución de dosis física correspondiente en varios aspectos y se debe tener especial cuidado al interpretar las distribuciones de dosis de EQD2:

- Los criterios de evaluación de la dosis física no se pueden utilizar directamente al evaluar las distribuciones de EQD2. Los criterios de dosis física siempre deben convertirse primero al dominio EQD2. Esto es esencial también para los tratamientos prescritos de 2 Gy por fracción para el tumor: incluso si la dosis prescrita en el tumor es de 2 Gy por fracción tanto en la dosis física como en la EQD2, los puntos fríos y calientes dentro del tumor se mejorarán en el dominio EQD2. Más importante aún, las tolerancias de tejido normales pueden diferir significativamente entre la dosis física y la distribución de EQD2 también para tratamientos fraccionados de 2 Gy.
- En una distribución de EQD2 calculada en la Evaluación del plan, se pueden asignar ROI adyacentes o superpuestas con diferentes valores de α/β y la distribución de EQD2 será discontinua en los límites entre las ROI con los diferentes valores de α/β . En las ROI superpuestas, una prioridad entre las ROI en el cálculo de EQD2 determina qué valor α/β se utilizará en un vóxel que pertenezca a más de una ROI. El resultado es que el valor α/β especificado para una ROI solo se puede utilizar en parte de la ROI.
- Para garantizar que se utiliza un valor α/β específico para evaluar un objetivo clínico en el dominio EQD2, se recomienda extraer primero el objetivo clínico para la dosis física y luego convertirlo a EQD2 con el valor α/β de elección, en lugar de extraer el objetivo clínico directamente de la distribución de EQD2. El informe de las métricas de EQD2 es común en la braquiterapia y RayPlan respalda los objetivos clínicos de EQD2 en el módulo de braquiterapia, que realiza automáticamente la conversión recomendada.

(408774)

Revise las estructuras del modelo de aplicador importado. No se identifican los canales candidatos importados de un modelo de aplicador. Del mismo modo, no se aprueban las ROI ni los POI importados. Como resultado, la geometría y la posición (relativa) de las estructuras del modelo de aplicador pueden modificarse utilizando las herramientas disponibles. El usuario es responsable de revisar cuidadosamente todas las partes del modelo (o modelos) de aplicador importado antes de aprobar el conjunto de estructuras para asegurar que todos las ROI, los POI y los canales braquiales están en su posición (relativa) prevista y tienen la geometría correcta.

[726082]

ADVERTENCIA:

Girar y trasladar el modelo de aplicador afecta a todas las estructuras disponibles.

Tenga en cuenta que las herramientas rotar y trasladar del modelo de aplicador rotarán/trasladarán todas las estructuras de tipos específicos que se hayan definido en el conjunto de estructuras, independientemente de si las estructuras se han importado de un modelo de aplicador. Y, lo que es más importante, esto incluye a todos los canales candidatos que no hayan sido identificados en un plano. Los otros tipos de estructura afectados son los POI de tipo Control y las ROI de tipo Brachy channel, Brachy accessory, Brachy channel shield y Brachy source applicator.

[726083]

ADVERTENCIA:

Girar y trasladar en el módulo Structure definition. Existen herramientas de edición 2D y 3D *Rotate* y *Translate* en el módulo Structure definition. Como se describe en la sección Herramientas de modificación de ROI en RSL-D-RP-2023B-USM, RayPlan 2023B User Manual, estas herramientas solo giran o trasladan las ROI seleccionadas. Las herramientas no mueven ningún canal candidato ni controlan los POI.

[726262]

3.1.12 Avisos sobre evaluación de la dosis

ADVERTENCIA:

Se muestran valores de dosis interpolados en las vistas de los pacientes. Por defecto, se muestran valores de dosis interpolados en las vistas de los pacientes. Asegúrese de utilizar la resolución de matriz de cálculo de dosis adecuada para la situación de planificación de tratamiento específica.

(3236)

ADVERTENCIA:

Visualización de la dosis total. Las vistas de los pacientes, el gráfico del HDV, las estadísticas de dosis y la lista de objetivos clínicos siempre muestran la dosis total para todas las fracciones planificadas.

La excepción es el módulo QA, en el que se visualiza la dosis para una fracción.

[3233]

ADVERTENCIA:

El sistema comprueba al aprobar. Tenga en cuenta que las siguientes comprobaciones antes de la aprobación solo se realizan para dosis de planificación:

- Validación de la entrada de haces.
- Existe una geometría ROI de bolus.
- Existe una geometría ROI de soporte.
- Existe una geometría ROI de fijación.
- La resolución de la matriz de cálculo de dosis es inferior a 5 mm en todas las direcciones.

En el caso de las dosis de evaluación, el usuario es responsable de realizar estas comprobaciones.

Tenga en cuenta que tener una matriz de cálculo de dosis que incluya ROI externas, de soporte, de fijación y de bolus no garantiza que todas las regiones pertinentes se incluyan en el cálculo de la dosis en grupos de datos adicionales. (508962)

Las dosis aproximadas solo están pensadas para los pasos intermedios de la planificación del tratamiento. La dosis aproximada es menos precisa que la dosis que se muestra como "Clinical" y no se debe utilizar para tomar decisiones clínicas. Un plan con una dosis aproximada no se puede aprobar ni exportar.

(9405)

Avisos sobre el comisionado del haz 3.1.13

Puesta en servicio de haces generales

ADVERTENCIA:

La calidad del modelo de haz depende de los datos del haz. La calidad del modelo de haz depende en gran medida de la calidad y del tipo de datos del haz, como curvas de dosis, factores de salida y cuña, calibración absoluta, tamaño del maniquí y ajustes de colimación, que determinan la configuración del campo de curva. Las condiciones de medición introducidas deben coincidir con la técnica de medición. Los tamaños de los campos medidos deben abarcar los tamaños de campo de las futuras aplicaciones del modelo de campo.

Todos los datos introducidos, como las curvas medidas y los factores de salida, deben ser coherentes y corresponderse con el sistema de administración que se pondrá en servicio. De lo contrario, el modelo de haz generado no será capaz de calcular una dosis correcta.

Para obtener más información, consulte RSL-D-RP-2023B-BCDS, RayPlan 2023B Beam Commissioning Data Specification.

[3188]

Limitaciones del equipo. Si las limitaciones del equipo definidas en RayPlan Physics no reflejan el comportamiento del equipo de tratamiento ni del sistema de R&V, los planes pueden interrumpirse en el momento de la administración o ajustarse fuera de RayPlan para llegar a una situación en la que la dosis administrada difiera de la dosis aprobada. A la hora de crear un modelo de equipo a partir de una plantilla, asegúrese de que todos los parámetros de limitaciones del equipo se ajusten a su equipo de tratamiento específico.

Aunque RayPlan cumpla todas las limitaciones del equipo especificadas en RayPlan Physics, no existe ninguna garantía de que se puedan administrar todos los planes. Asegúrese de que los planes no se modifiquen fuera de RayPlan de un modo que afecte significativamente a la dosis sin una evaluación adecuada.

(3185)

ADVERTENCIA:

Parámetros del modelo de haz. La precisión del cálculo de la dosis depende en gran medida de los parámetros del modelo de haz establecidos durante la puesta en servicio del haz. Antes de poner un equipo en servicio, una persona con formación adecuada debe revisar con cuidado todos los parámetros del modelo de haz.

(9377)

ADVERTENCIA:

Revise siempre las curvas después de importar. Revise siempre las curvas después de importar para garantizar la coherencia con la situación de medición. La calidad del modelo de haz depende en gran medida de la corrección de los datos importados.

(9373)

Puesta en servicio de haces de LINAC del brazo en forma de C, TomoTherapy y CyberKnife

ADVERTENCIA:

Los equipos de intensidad modulada con arco dinámico requieren información sobre el movimiento del colimador, el movimiento del brazo (gantry) y las tasas de dosis. La desviación entre los valores seleccionados y el comportamiento del acelerador/sistema de LINAC/R&V puede provocar diferencias entre la dosis administrada y la dosis aprobada en RayPlan.

[3183]

ADVERTENCIA:

Cuña Siemens Virtual. Los valores predeterminados de los parámetros de la Siemens virtual wedge, como la atenuación lineal y la calibración medias, deben ajustarse con los valores adecuados para su LINAC. Si esto no se hace, la dosis clínica calculada podría ser errónea.

[3180]

ADVERTENCIA:

Orientación de la cuña en la curva de dosis. La orientación de la cuña en las curvas acuñadas se determina a partir de la curva en el momento de la importación. Todos los ángulos de cuña deben medirse con la misma orientación. Si todas las curvas no tienen la misma orientación de cuña, entonces no se importarán curvas. En caso de que no se pueda determinar la orientación de las curvas, se asume que su orientación es idéntica a la de las otras curvas importadas en el mismo momento.

(9371)

Calibración del colimador. Las calibraciones del colimador (compensación, ganancia y curvatura) se utilizan para desplazar las posiciones del colimador desde las posiciones del plano (mostradas en la vista de ojo del haz, en listas de haces, en informes, exportadas en DICOM, etc.) hasta una posición eficaz utilizada en el cálculo de dosis. Para las curvas de dosis, esto solo desplaza la penumbra, pero para un campo VMAT, SMLC o DMLC con muchos segmentos que se suman, esto puede cambiar considerablemente el nivel de dosis global. Asegúrese de que el desplazamiento del colimador en el modelo de haz es realmente el previsto. Tenga especial cuidado con los desplazamientos de ganancia y curvatura, que aumentan al aumentar las distancias desde el origen. Los resultados del paso de calibración del colimador de automodelado deben revisarse antes del uso clínico.

(9368)

ADVERTENCIA:

Corrección del perfil del haz y suavizado fuera del eje en radios de campos grandes.

Los parámetros del modelo de haz de fotones *Beam profile correction* (Corrección del perfil del haz) y *Off-axis softening* (Suavizado fuera del eje) no se pueden evaluar en radios grandes en el módulo Beam Commissioning (Puesta en servicio del haz) sin tener perfiles diagonales importados que se extienden hasta las esquinas del campo. Se debe tener especial cuidado al utilizar el modelado automático para los parámetros *Beam profile correction* (Corrección del perfil del haz) y *Off-axis softening* (Suavizado fuera del eje) si solo hay curvas de perfil X e Y importadas en el módulo Beam Commisioning (Puesta en servicio del haz). Tenga en cuenta que los ajustes manuales de estos parámetros en radios grandes serán necesarios después de utilizar el modelado automático sin curvas diagonales. El módulo Beam 3D Modeling (Modelado en 3D de haces) se puede utilizar para comprobar la dosis calculada de todo el campo, incluidas las esquinas, antes de poner en servicio un equipo (no está disponible para LINAC CyberKnife).

[3438]

Modo de fluencia no estándar. Al modelar la calidad de un haz de fotones con un modo de fluencia no estándar (FFF/SRS), es fundamental seleccionar el modo de fluencia correcto a la hora de añadir la calidad del haz. Si el modo de fluencia no se establece correctamente, el LINAC podrá malinterpretar los planes que usen la calidad del haz y provocar una administración incorrecta de la dosis.

Si se utiliza el modo de fluencia estándar para la calidad del haz, los planes de RT establecerán el Fluence mode (Modo de fluencia) en "STANDARD" (ESTÁNDAR) y no se exportará la Fluence mode ID (ID del modo de fluencia).

Si se selecciona un modo de fluencia no estándar, los planes de RT establecerán el Fluence mode (Modo de fluencia) en "NON STANDARD" y la Fluence mode ID (ID del modo de fluencia) en el modo de fluencia seleccionado (FFF/SRS).

(9365)

ADVERTENCIA:

Energía de haces de fotones y energía nominal de haces de fotones para el cálculo de la dosis. El cálculo de la dosis de fotones de RayPlan utiliza internamente una definición de energía de fotones establecida en la BJR n.º 11 (British Journal of Radiology, suplemento número 11). Se puede especificar una energía de haces de fotones nominal que sea diferente de la energía de cálculo de la dosis; por ejemplo, para utilizar una definición de energía de fotones según la BJR n.º 17.

La energía nominal se mostrará en la interfaz de usuario de RayPlan y se utilizará en informes y como energía de haz nominal DICOM en importaciones y exportaciones en formato DICOM.

La energía de cálculo de la dosis se utilizará para calcular las dosis de fotones, incluso para obtener los parámetros de la tabla segmentada para el tratamiento de la cuña [GSTT] correctos para el cálculo de la dosis con la cuña dinámica mejorada de Varian. Por tanto, es fundamental establecer una energía de cálculo de la dosis que sea correcta, independientemente de la definición de energía seleccionada.

[4889]

Las compensaciones de latencia de lámina de TomoTherapy afectan tanto al tamaño como al resultado de la dosis. Las compensaciones de latencia de lámina se importan desde iDMS y también pueden editarse en RayPlan Physics. Los cambios en las compensaciones de latencia de lámina pueden tener un efecto diferente para diferentes tamaños de campo de mordaza, tiempos de proyección y tiempos de apertura de lámina. Asegúrese de que la precisión de la dosis se valida para todas las aperturas de mordaza y en todo el rango de tiempos de proyección clínicamente significativo y tiempos de apertura de lámina antes de usar el modelo clínicamente.

Į.

ADVERTENCIA:

Precisión del cálculo de dosis de TomoTherapy para tiempos de apertura y cierre de lámina cortos. Para los planes de TomoHelical y TomoDirect con una gran cantidad de tiempos cortos de apertura y cierre de lámina, la dosis administrada puede diferir considerablemente de la dosis calculada. El motivo es que, con movimientos rápidos de la lámina, el equipo de tratamiento no abre/cierra las láminas de acuerdo con el modelo utilizado para calcular la dosis.

Para evitar unos tiempos de apertura y cierre de lámina cortos al crear planes con RayPlan, utilice los parámetros del modelo de haz *Minimum leaf open time* y *Minimum leaf close time*. El problema se producirá con determinadas características del tiempo de apertura/cierre de lámina específicas del equipo, aunque un valor de 50 ms suele ser adecuado tanto para el *Minimum leaf open time* como para el *Minimum leaf close time*.

Para hallar los valores adecuados del Minimum leaf open time y del Minimum leaf close time para cada unidad de tratamiento TomoTherapy, se pueden medir los datos de latencia de lámina según se describe en Westerly DC, Soisson E, Chen Q, Woch K, Schubert L, Olivera G and Mackie TR, Treatment planning to improve delivery accuracy and patient throughput in helical tomotherapy, Int J Radiat Oncol Biol Phys. 2009;74(4):1290–1297.

(7551)

3 1 14 Avisos sobre control de calidad

ADVERTENCIA:

Utilice el plan de tratamiento exportado para la verificación del plan. Utilizar el plan de tratamiento para realizar mediciones de control de calidad permite detectar errores en la transferencia de datos o cálculo de la dosis. Se recomienda utilizar solo el plan de control de calidad para calcular la dosis de control de calidad y realizar las mediciones de control de calidad mediante el plan de tratamiento. Si, por algún motivo, no es posible utilizar el plan de tratamiento para realizar mediciones de control de calidad, asegúrese de que la configuración del plan de control de calidad sea lo más cercana posible a la configuración del plan de tratamiento y que se comprenden los efectos de las diferencias. (9438)

ADVERTENCIA:

Contracción de los ángulos del brazo en el control de calidad del haz de arco. La contracción de los ángulos del brazo en un solo ángulo para los haces de arco (de VMAT y de arco conformado) en el módulo QA Preparation se ha diseñado para la ejecución del control de calidad con un detector montado perpendicular al haz de tratamiento y rotatorio con respecto al brazo. Se puede utilizar la dosis calculada en el módulo QA Preparation, pero el control de calidad se llevará a cabo con un brazo rotatorio para detectar posibles problemas de administración asociados a la rotación del brazo. Para obtener más detalles sobre el cálculo de la dosis para haces de arco y haces de arco contraídos, consulte RSL-D-RP-2023B-REF, RayPlan 2023B Reference Manual

[2380]

3.1.15 Avisos sobre la RayPlan Storage Tool (Herramienta de almacenamiento de RayStation)

ADVERTENCIA:

Compruebe la coherencia de la base de datos antes de actualizarla. Es posible crear un nuevo sistema de base de datos basado en un sistema existente en la RayPlan Storage Tool (Herramienta de almacenamiento de RayStation). Antes de crear un nuevo sistema basado en un sistema existente, asegúrese de que ejecuta la herramienta ConsistencyAnalyzer. (231801)

RayPlan Storage Tool. Cuando la RayPlan Storage Tool (Herramienta de almacenamiento de RayStation) abre una versión anterior de la base de datos de recursos, dicha base de datos se actualizará y no podrá utilizarse con versiones anteriores. [261396]

ADVERTENCIA:

Modo de transferencia para bases de datos secundarias. Si se utiliza una base de datos de pacientes como base de datos secundaria en más de un sistema, el modo de transferencia es el mismo.

(466425)

IMPORTACIÓN DE DATOS DEL PACIENTE 3.2

Todos los datos de los pacientes se importan mediante DICOM. El procedimiento de importación de datos de pacientes se describe en el manual del usuario, RSL-D-RP-2023B-USM, RayPlan 2023B User Manual, y en la declaración de conformidad de DICOM, RSL-D-RP-2023B-DCS, RayPlan 2023B DICOM Conformance Statement.

3.3 **DATOS DE ENTRADA**

Todos los datos de entrada del usuario se validan en el momento de su entrada. Los valores o texto incorrectos se rechazan, se muestran los límites o el formato correcto y se indica al usuario que introduzca nuevos datos.

FORMATO DE VISUALIZACIÓN 3.4

En RayPlan, la fecha y la hora se muestran con el formato «dd MMM AAAA, hh:mm:ss (h:min:s)», por ejemplo., «14 ene 1975, 08:20:42 (h:min:s)».

4 INSTRUCCIONES DE INSTALACIÓN

En este capítulo se describen los procesos y las pruebas relacionadas con la instalación del sistema RayPlan 2023B.

En este capítulo

Este capítulo contiene las siguientes secciones:

4.1	Manual de instalación	p. 74
4.2	Prueba de aceptación del entorno del sistema	p. 74
4.3	Comprobaciones diagnósticas del hardware	p. 74
4.4	Entorno de comunicación de datos	p. 74

MANUAL DE INSTALACIÓN 4.1

Para ver el manual de instalación, consulte RSL-D-RP-2023B-CIRSI, RauPlan 2023B Customer Instruction for RayPlan Installation.

PRUEBA DE ACEPTACIÓN DEL ENTORNO DEL SISTEMA 4.2

La prueba de aceptación del entorno del sistema debe realizarse cada vez que se instale o modifique una plataforma de hardware o software que contenga la aplicación (p. ej., actualización del sistema operativo) para comprobar la instalación y el funcionamiento de la aplicación. La prueba se define en RSL-D-RP-2023B-SEAT, RayPlan 2023B System Environment Acceptance Test Protocol.

COMPROBACIONES DIAGNÓSTICAS DEL HARDWARE 4.3

Para evitar que RayPlan o RayPlan Physics se ejecuten en un entorno de hardware defectuoso, se lleva a cabo una autocomprobación al inicio de cada acción de cálculo mediante GPU. Dependiendo de la acción que se solicite (por ejemplo, dosis de fotones de cono colapsado), se ejecuta una prueba específica y el resultado se compara con una lista predefinida de resultados de entornos aprobados. Una prueba correcta es válida hasta que se cierra RayPlan o RayPlan Physics y la prueba no se volverá a ejecutar para las acciones posteriores protegidas por la misma autocomprobación.

Si se produce un error en la prueba, se notifica al usuario y no será posible realizar ningún cálculo mediante GPU por medio de una acción protegida por la autocomprobación con errores. Todavía será posible ejecutar otros cálculos mediante CPU donde la autocomprobación esté libre de errores.

La prueba se ejecuta en todas las GPU seleccionadas que se usarán para cálculos acelerados. No obstante, el usuario es el absoluto responsable de garantizar que las tarjetas seleccionadas, así como la versión del SO, la versión del controlador y otros detalles del entorno se enumeren como combinaciones válidas en el RSL-D-RP-2023B-SEG, RayPlan 2023B System Environment Guidelines. Asimismo, antes del uso clínico, la operación de cálculos mediante GPU debe ser verificada por un físico cualificado con el RSL-D-RP-2023B-SEAT, RayPlan 2023B System Environment Acceptance Test Protocol

ENTORNO DE COMUNICACIÓN DE DATOS 4.4

El sistema RayPlan 2023B se comunica con otros sistemas mediante DICOM. Para más detalles, consulte RSL-D-RP-2023B-DCS, RayPlan 2023B DICOM Conformance Statement. La clínica del usuario es responsable de garantizar que la conectividad entre RayPlan y los sistemas importa los datos de las tareas conforme a lo previsto y que los datos exportados son correctamente gestionados por los sistemas receptores.

5 VISUALIZACIÓN DE COORDENADAS, MOVIMIENTOS Y ESCALAS

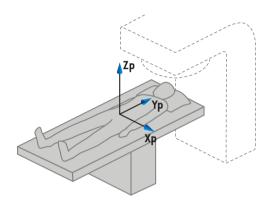
RayPlan 2023B utiliza el estándar IEC 61217³ para la visualización de coordenadas, movimientos y escalas durante la planificación del tratamiento, con algunas excepciones. El usuario puede configurar los ángulos del brazo (gantry), el colimador y la mesa, así como el sistema de coordenadas de campo, por LINAC del brazo (gantry) en forma de C, para no seguir la normativa IEC. Además, el equipo de tratamiento CyberKnife se describe en parte con un sistema de coordenadas no IEC. Para obtener más información sobre las excepciones definidas por el usuario, así como sobre la excepción de CyberKnife, consulte sección 5.3 El sistema de coordenadas del equipo de tratamiento en la página 78.

Nota:

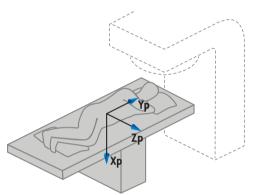
RayPlan 2023B admite las posiciones del paciente decúbito supino con la cabeza primero (HFS), decúbito prono con la cabeza primero (HFP), decúbito supino con los pies primero (FFS), decúbito prono con los pies primero (FFP), decúbito izquierdo con la cabeza primero (HFDL), decúbito derecho con la cabeza primero (HFDR), decúbito izquierdo con los pies primero (FFDL) y decúbito derecho con los pies primero (FFDR); sin embargo, no todas las técnicas de tratamiento admiten cualquier posición del paciente.

En este capítulo

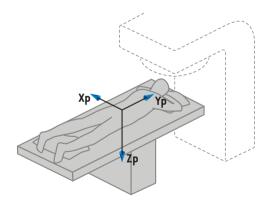
Este capítulo contiene las siguientes secciones:


5.1	El sistema de coordenadas del paciente	p. 76
5.2	Sistema de coordenadas de pacientes en la exportación en formato DICOM	p. 77
5.3	El sistema de coordenadas del equipo de tratamiento	p. 78
5.4	El estándar de etiquetaje de mordazas y MLC	р. 94

³ IEC 61217:2011 Equipos utilizados en radioterapia. Coordenadas, movimientos y escalas.

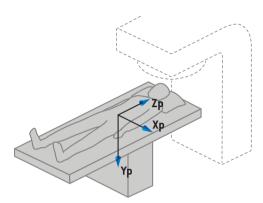

5.1 EL SISTEMA DE COORDENADAS DEL PACIENTE

El sistema de coordenadas del paciente está orientado con el eje X positivo hacia el brazo izquierdo del paciente, el eje Ypositivo hacia la cabeza del paciente y el eje Z positivo en la dirección anterior. El sistema de coordenadas sigue la orientación del paciente: primero la cabeza o primero los pies, decúbito supino o decúbito prono, decúbito izquierdo o decúbito derecho. En la jerarquía de los sistemas de coordenadas IEC 61217, el sistema de coordenadas del paciente tiene el sistema de coordenadas de sobremesa como sistema principal.


La dosis de RayPlan 2023B y las distribuciones de diferencias de dosis se visualizan en el sistema de coordenadas del paciente. En general, en RauPlan 2023B las coordenadas del paciente se notifican como Right-Left (derecha-izquierda), R-L (derecha-izquierda = x -/+), Inf-Sup, I-S [inferior-superior = y - / + y | **Post-Ant**, **P-A** [posterior-anterior = z - / + y].

A) Decúbito supino con la cabeza primero

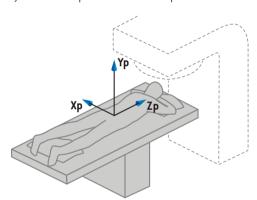
B) Decúbito izquierdo con la cabeza primero



C) Decúbito prono con la cabeza primero

Ilustración 2. El sistema de coordenadas del paciente. Se muestran algunos ejemplos de posiciones admitidas: A) decúbito supino con la cabeza primero (HFS), B) decúbito izquierdo con la cabeza primero (HFDL) y C) decúbito prono con la cabeza primero (HFP).

5.2 SISTEMA DE COORDENADAS DE PACIENTES EN LA EXPORTACIÓN EN FORMATO DICOM

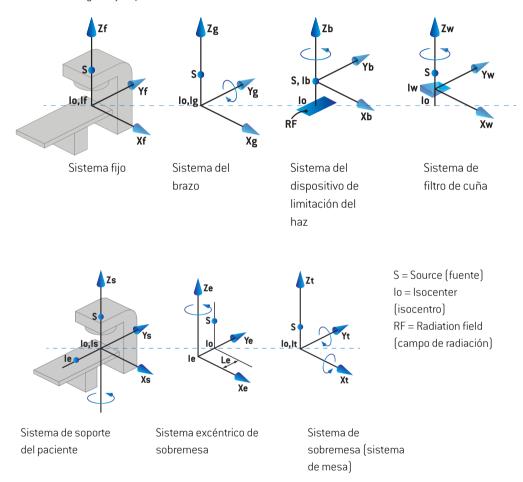

Las coordenadas del paciente en conjuntos de datos exportados en formato DICOM siguen el estándar DICOM, con el eje X positivo orientado hacia el brazo izquierdo del paciente, el eje Z positivo hacia la cabeza del paciente y el eje Y positivo en sentido posterior. El sistema de coordenadas sigue la orientación del paciente: primero la cabeza o primero los pies, decúbito supino o decúbito prono, decúbito izquierdo o decúbito derecho.

Yp

A) Decúbito supino con la cabeza primero

B) Decúbito izquierdo con la cabeza primero

C) Decúbito prono con la cabeza primero

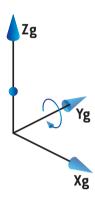

Ilustración 3. El sistema de coordenadas del paciente en la exportación en formato DICOM sigue el estándar DICOM. Se muestran algunos ejemplos de posiciones admitidas: A) decúbito supino con la cabeza primero (HFS), B) decúbito izquierdo con la cabeza primero (HFDL) y C) decúbito prono con la cabeza primero (HFP).

5.3 EL SISTEMA DE COORDENADAS DEL EQUIPO DE TRATAMIENTO

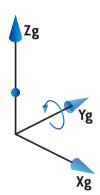
RauPlan 2023B utiliza el estándar IEC 61217 para visualizar las coordenadas, los movimientos u las escalas del LINAC durante la planificación del tratamiento, salvo los ángulos del brazo (gantru), del colimador y de la mesa y los sistemas de coordenadas de campo, que se pueden configurar, por LINAC del brazo en forma de C, para que no sean IEC. Hay también dos opciones para el etiquetado de mordazas. Los generadores de imágenes de posicionamiento también pueden describirse utilizando rotaciones no IEC; consulte sección 5.3.10 Sistemas de coordenadas de generadores de imágenes de posicionamiento en la página 91. Los movimientos del cabezal por radiación CyberKnife no se pueden describir mediante el IEC 61217, consulte sección 5.3.8 El sistema de coordenadas de la fuente de radiación de CyberKnife en la página 87.

5.3.1 Visión general de los sistemas de coordenadas del equipo

Los sistemas de coordenadas del equipo en el estándar IEC 61217 son un conjunto de sistemas de coordenadas, cada uno de los cuales se define en relación con su sistema de coordenadas principal, empezando por un sistema de coordenadas fijo que tiene su origen en el isocentro, una dirección X positiva hacia la derecha desde el punto de vista de un observador situado frente al brazo (gantry), un eje Y positivo desde el isocentro hasta el brazo a lo largo del eje de rotación del brazo y un eje Z positivo en dirección ascendente desde el isocentro.


Ilustración 4. Los sistemas de coordenadas del equipo de acuerdo con el estándar IEC 61217.

Si la máquina se pone en marcha para sustituir la rotación de la mesa por la rotación anular, la rotación alrededor del eje Zs en el sistema de coordenadas del soporte del paciente se sustituye por una rotación en la dirección opuesta alrededor del eje Zg en el sistema de coordenadas del brazo. De este modo, se mantiene la relación entre el paciente y los sistemas del brazo.


532 El sistema de coordenadas del brazo

El sistema de coordenadas del brazo gira con el brazo (gantru). El sistema de coordenadas del brazo tiene el sistema de coordenadas fijas como sistema principal.

El IEC standard (Estándar IEC), está definido para coincidir con el sistema de coordenadas fijo cuando el ángulo del brazo (gantry) es cero. El ángulo del brazo (gantry) aumenta gradualmente en sentido horario desde el punto de vista de un observador situado frente al brazo.

En Non-IEC gantry scale (Varian Standard) [Escala del brazo no IEC [estándar Varian]], el ángulo del brazo es de 180 grados cuando el haz entra por la parte superior. El ángulo del brazo (gantry) aumenta gradualmente en sentido antihorario desde el punto de vista de un observador situado frente al brazo (gantry).

Si un LINAC se configura para utilizar un ángulo de brazo (gantry) según el estándar Nota:

IEC 61217, la unidad del ángulo se indica en [deg] (grados).

Nota: Si un LINAC se configura para utilizar un ángulo de brazo (gantry) según el estándar Non-IEC ("Varian Standard"), la unidad del ángulo se indica en [deg Non-IEC] [grados].

5.3.3 Sistema de coordenadas del dispositivo limitador de haz

El sistema de coordenadas del dispositivo limitador de haz es fijo en el dispositivo limitador de haz del brazo. El sistema de coordenadas del dispositivo limitador de haz tiene el sistema de coordenadas del brazo como sistema principal.

Existen tres ajustes en RayPlan Physics que afectan al comportamiento de los ángulos, las posiciones y los nombres en este sistema de coordenadas: **Gantry and collimator coordinate system definitions** (Definiciones del sistema de coordenadas del brazo [gantry] y el colimador), **Field coordinate system definitions** (Definiciones del sistema de coordenadas del campo) y **Jaw labeling standard** (Estándar de etiquetaje de mordazas). Si todos estos ajustes se establecen en "IEC 61217", las definiciones coinciden con las del estándar IEC 61217.

El ajuste Gantry and collimator coordinate system definitions (Definiciones del sistema de coordenadas del brazo y el colimador)

El ajuste **Gantry and collimator coordinate system definitions** (Definiciones del sistema de coordenadas del brazo [gantry] el colimador) de RayPlan Physics controla la notificación del ángulo de rotación del dispositivo limitador de haz:

- En el estándar IEC, los ejes coinciden con el sistema de brazo (gantry) cuando el ángulo del
 colimador es cero. El ángulo del colimador se define como positivo para la rotación en sentido
 antihorario en la vista general de los haces, es decir, cuando se mira desde la fuente. En este
 sistema de coordenadas, en los equipos Varian el ángulo del colimador normalmente es de
 180 grados cuando la abertura de la bandeja está mirando hacia el brazo (gantry).
- El sistema de coordenadas del colimador según un estándar no IEC (estándar Varian) se gira 180 grados en comparación con el estándar IEC, y el ángulo del colimador se define como positivo para la rotación en sentido horario en la vista general de los haces, es decir, cuando se observa desde la fuente. En este sistema de coordenadas, en los equipos Varian el ángulo del colimador normalmente es de cero grados cuando la abertura de la bandeja está mirando hacia el brazo (gantry).

Nota: Si un LINAC se configura para utilizar un ángulo de colimador según el estándar IEC

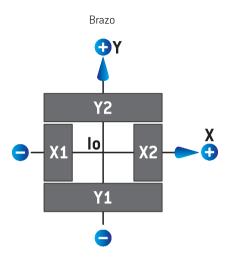
61217, la unidad del ángulo se indica en [deg] (grados).

Nota: Si un LINAC se configura para utilizar un ángulo de colimador según un estándar no

IEC, la unidad del ángulo se indica en [deg Non-IEC] (grados no IEC).

El ajuste Field coordinate system definitions (Definiciones del sistema de coordenadas del campo)

El ajuste **Field coordinate system definitions** (Definiciones del sistema de coordenadas del campo) de RayPlan Physics define cómo se notifican y se definen las posiciones de las mordazas y las láminas del MLC. La descripción siguiente utiliza las convenciones de denominación de las mordazas de conformidad con el estándar IEC 61217.

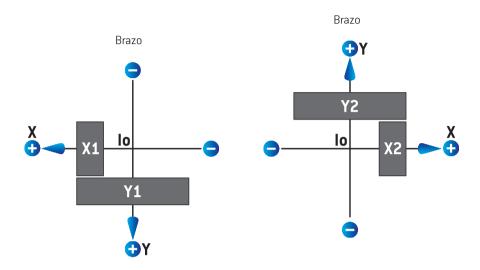

Nota:

Si un LINAC se configura para utilizar el sistema de coordenadas de campo según el IEC 61217, la unidad de las posiciones de las láminas y mordazas se indicará en [cm].

Nota:

Si un LINAC se configura para utilizar el sistema de coordenadas de campo según un estándar no IEC, la unidad de las posiciones de las láminas y mordazas se indica en cm no IEC.

Posiciones del colimador según el estándar IEC 61217


Ilustración 5. Las posiciones del colimador en la vista general de los haces según el estándar IEC 61217.

En la tabla siguiente se describen las posiciones del colimador según el estándar IEC 61217, para un haz con un ángulo de colimador (IEC) O cuando se visualiza desde la fuente.

Cuando el borde de	está situado a la	del eje del isocentro, su valor de lectura de posición es
X1, X2 (mordaza o lámina del MLCX)	derecha	positivo
X1, X2 (mordaza o lámina del MLCX)	izquierda	negativo
Y1, Y2 (mordaza o lámina del MLCY)	lado del brazo	positivo
Y1, Y2 (mordaza o lámina del MLCY)	lado opuesto al brazo	negativo

Posiciones del colimador según el estándar no IEC (Varian Standard)

En el estándar no IEC, las coordenadas de posición positivas se notifican en todas las direcciones para las mordazas y las láminas que no han cruzado la línea central. Es decir, las coordenadas negativas se notifican para el sobrerrecorrido.

llustración 6.

Las posiciones del colimador en la vista general de los haces según el estándar no IEC (estándar Varian). Tenga en cuenta que las coordenadas que se visualizan en la vista general de los haces de RayPlan siempre utilizan el sistema de coordenadas de IEC 61217.

En la tabla siguiente se describen las posiciones del colimador según el estándar no IEC (Varian Standard), para un haz con un ángulo de colimador (IEC) O cuando se visualiza desde la fuente.

Cuando el borde de	está situado a la	del eje del isocentro, su valor de lectura de posición es
X1 (mordaza o lámina del MLCX)	derecha	negativo
X1 (mordaza o lámina del MLCX)	izquierda	positivo
X2 (mordaza o lámina del MLCX)	derecha	positivo
X2 (mordaza o lámina del MLCX)	izquierda	negativo
Y1 (mordaza o lámina del MLCY)	lado del brazo	negativo

Cuando el borde de	está situado a la	del eje del isocentro, su valor de lectura de posición es
Y1 (mordaza o lámina del MLCY)	lado opuesto al brazo	positivo
Y2 (mordaza o lámina del MLCY)	lado del brazo	positivo
Y2 (mordaza o lámina del MLCY)	lado opuesto al brazo	negativo

El ajuste Jaw labeling standard (Estándar de etiquetaje de mordazas)

El ajuste **Jaw labeling standard** (Estándar de etiquetaje de mordazas) de RayPlan Physics se describe en la sección 5.4 El estándar de etiquetaje de mordazas y MLC en la página 94.

5.3.4 El sistema de coordenadas del filtro de cuña

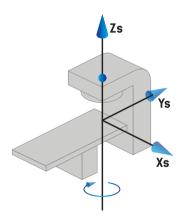
El sistema de coordenadas del filtro de cuña gira con la cuña y el eje Y positivo señala desde el talón hasta la punta de la cuña. El sistema de coordenadas del filtro de cuña tiene el sistema de coordenadas del dispositivo limitador de haz como sistema principal. En RayPlan Physics y en la aplicación principal de RayPlan 2023B, el sistema de coordenadas de la cuña se define para que coincida con el sistema de coordenadas del colimador seleccionado (IEC 61217 o no IEC) para una orientación de cuña de cero grados.

- Para el sistema de coordenadas del colimador IEC 61217, la orientación de la cuña es de cero grados cuando la punta señala en dirección al brazo para el ángulo cero del colimador.
- Para el sistema de coordenadas del colimador no IEC, la orientación de la cuña es de cero grados no IEC cuando la punta señala en dirección opuesta al brazo para los cero grados del ángulo del colimador no IEC.

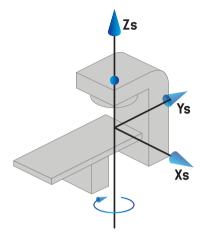
La orientación de la cuña aumenta gradualmente en una rotación en sentido antihorario.

Nota: Si un LINAC se configura para utilizar un ángulo de colimador según el estándar IEC 61217, la unidad del ángulo de orientación de la cuña se indica en [deg] (grados).

Nota: Si un LINAC se configura para utilizar un ángulo de colimador según un estándar no IEC, la unidad del ángulo de orientación de la cuña se indica en [deg Non-IEC] (grados no IEC).


5.3.5 El sistema de coordenadas de apoyo del paciente

El sistema de coordenadas de apoyo del paciente gira con la parte del soporte del paciente que gira alrededor del eje Zs vertical. El sistema de coordenadas de apoyo del paciente tiene el sistema de coordenadas fijas como sistema principal.


• En **IEC standard** (Estándar IEC), el sistema de soporte del paciente coincide con el sistema fijo cuando el ángulo de la mesa es cero. La dirección de rotación positiva es en sentido antihorario si se mira desde arriba.

• En **Non-IEC 1 (Varian IEC)** machine scale (Escala del equipo no IEC 1 [Varian IEC]), el sistema de soporte del paciente coincide con el sistema fijo cuando el ángulo de la mesa es cero. La dirección de rotación positiva es en sentido horario si se mira desde arriba.

• En **Non-IEC 2 (Varian Standard)** machine scale (Escala del equipo no IEC 2 [Varian Standard]), el ángulo de la mesa es de 180 grados cuando el ángulo de la mesa IEC es cero. La dirección de rotación positiva es en sentido horario si se mira desde arriba.

Nota: Si un LINAC se configura para utilizar un ángulo de mesa según el estándar IEC

61217, la unidad del ángulo se indica en [deq] (grados).

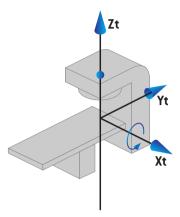
Nota: Si un LINAC se configura para utilizar un ángulo de mesa según un estándar no IEC

1 (Varian IEC), la unidad del ángulo se indica en [grados no IEC] en la interfaz de usuario y como [grados no IEC en sentido horario] en los informes de planes.

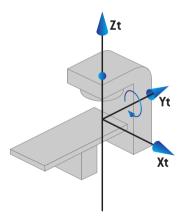
Nota: Si un LINAC se configura para utilizar un ángulo de mesa según un estándar no IEC

2 (Estándar Varian), la unidad del ángulo se indica en [grados no IEC] en la interfaz de usuario y como [grados no IEC en sentido horario] en los informes de planes.

5.3.6 El sistema de coordenadas excéntrico de sobremesa


En RayPlan, solo se admite el ángulo de rotación de sobremesa excéntrico de cero grados y la distancia de desplazamiento cero, por lo que el sistema de coordenadas excéntrico de sobremesa siempre coincide con el sistema de coordenadas de apoyo del paciente. El sistema de coordenadas excéntrico de sobremesa tiene el sistema de coordenadas de apoyo del paciente como sistema principal.

5.3.7 El sistema de coordenadas de sobremesa


En RayPlan, el sistema de coordenadas de sobremesa tiene el sistema de coordenadas excéntrico de sobremesa como su sistema madre. Los ángulos de cabeceo y alabeo siempre se expresan conforme al estándar IEC. Las rotaciones posteriores se definen en el orden de ángulo de cabeceo seguido por ángulo de alabeo.

• El ángulo de cabeceo de sobremesa se define como la rotación sobre el eje Xt. Un aumento del ángulo de cabeceo se corresponde con la rotación en sentido horario del sistema de

sobremesa desde la perspectiva del origen del sistema de coordenadas de sobremesa junto con el eje Xt positivo.

 El ángulo de alabeo de sobremesa se define como la rotación sobre el eje Yt. Un aumento del ángulo de alabeo se corresponde con la rotación en sentido horario del sistema de sobremesa desde la perspectiva del origen del sistema de coordenadas de sobremesa junto con el eje Yt positivo.

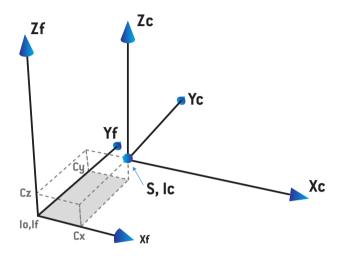
5.3.8 El sistema de coordenadas de la fuente de radiación de CyberKnife

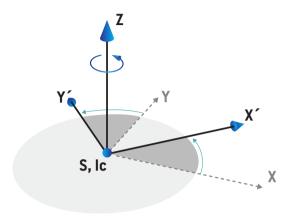
El sistema de coordenadas de la fuente de radiación de CyberKnife se mueve con el cabezal de radiación de CyberKnife y tiene su origen en la fuente de radiación. El sistema de coordenadas de la fuente de radiación de CyberKnife tiene el sistema de coordenadas fijo como su sistema principal. Para los tratamientos de CyberKnife, el sistema de coordenadas de la fuente de radiación de CyberKnife es el sistema principal del sistema de coordenadas del dispositivo limitador del haz.

El sistema de coordenadas de la fuente de radiación de CuberKnife se define por un conjunto de seis valores en relación con su sistema principal. Los seis valores son las coordenadas de posición de origen (Cx, Cu, Cz) y los ángulos de rotación (guiñada, alabeo, cabeceo).

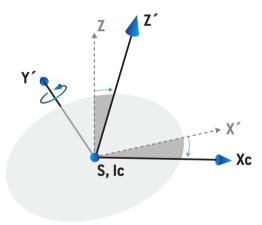
Posición de origen

La posición de origen (Cx, Cy, Cz) define la posición del origen (Ic) del sistema de coordenadas de la fuente de radiación de CyberKnife en las coordenadas del sistema de coordenadas fijo.



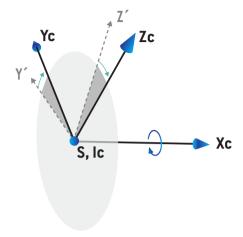

Ilustración 7. Ilustración de la posición de origen, donde lo = Isocentro, S = Fuente (Source), c = Sistema de coordenadas de la fuente de radiación de CyberKnife y f = Sistema de coordenadas fijo (Fixed coordinate system).

Rotación

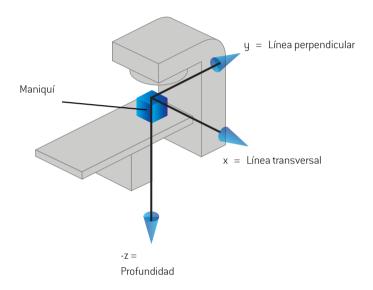

Las tres rotaciones de guiñada, alabeo y cabeceo definen la orientación del sistema de coordenadas de la fuente de radiación de CyberKnife teniendo en cuenta su propia orientación de referencia. En la orientación de referencia, los ángulos de guiñada, alabeo y cabeceo son todos 0 y los ejes Xc, Yc y Zc son paralelos a Xf, Yf y Zf respectivamente. Las rotaciones se aplican en el siguiente orden: guiñada, seguido de alabeo y, por último, cabeceo. El alabeo y el cabeceo son rotaciones alrededor de los ejes resultantes de las primeras una o dos rotaciones.

La guiñada es una rotación de X e Y alrededor de Z. El ángulo de guiñada aumenta gradualmente en la rotación hacia la izquierda, si se observa desde un punto en el eje Z positivo orientado

hacia el origen. X, Y y Z son los ejes de la orientación de referencia. X', Y' y Z son los ejes resultantes de la rotación de guiñada.



 El Alabeo es una rotación de Z y X' alrededor de Y'. El ángulo de alabeo aumenta gradualmente en la rotación hacia la izquierda, si se observa desde un punto en el eje Y positivo orientado hacia el origen. Xc, Y' y Z' son los ejes resultantes de la rotación de guiñada seguida de la rotación de balanceo.


• El **cabeceo** es una rotación de Y' y Z' alrededor de Xc. El ángulo de cabeceo aumenta gradualmente en la rotación hacia la derecha, si se observa desde un punto en el eje Xc positivo

orientado hacia el origen. Xc, Yc y Zc son los ejes finales resultantes después de las tres rotaciones; guiñada seguida de alabeo y de cabeceo.

5.3.9 Sistema de coordenadas de la curva de dosis en RayPlan Physics

El módulo Beam Commissioning (Puesta en servicio de haces) tiene un sistema de coordenadas de la curva de dosis que se corresponde con el sistema de coordenadas del brazo IEC, trasladado de modo que el origen está en el eje central en la superficie del maniquí de agua. El eje X se alinea con el eje de la línea transversal. El eje Y se alinea con el eje de la línea perpendicular con la dirección positiva hacia el brazo. La dirección Z negativa, desde la fuente hacia el isocentro, se alinea con la dirección de profundidad. Siempre se presupone que los ángulos del brazo y del colimador son de cero grados para las curvas de dosis en el módulo Beam Commissioning (Puesta en servicio de haces). El modelo es totalmente simétrico en el plano XZ y el YZ, mientras que las mediciones a veces pueden ser ligeramente asimétricas.

Ilustración 8. El sistema de coordenadas de la curva de dosis.

5.3.10 Sistemas de coordenadas de generadores de imágenes de posicionamiento

Los generadores de imágenes de posicionamiento se describen en RayPlan según el sistema de coordenadas X-Ray Image Receptor (Receptor de imágenes de rayos X). Se fija en relación con el generador de imágenes de posicionamiento. La orientación del sistema de coordenadas X-Ray Image Receptor respecto al sistema de coordenadas fijo IEC se describe usando tres rotaciones.

La primera rotación es una rotación del brazo sobre el eje Y del sistema de coordenadas Fixed (Fijo), descrito en sección 5.3.2 El sistema de coordenadas del brazo en la página 80.

Nota: La rotación no es necesariamente una rotación del brazo (gantry) de tratamiento, sino una rotación sobre el eje Y del sistema de coordenadas fijo. Los generadores de imágenes de posicionamiento solo admiten rotaciones del IEC Gantry (brazo).

El segundo sistema de coordenadas, el sistema de coordenadas Gantry Pitch (Cabeceo del brazo) [llustración 9], tiene el sistema de coordenadas Gantru [Brazo] como su sistema madre y es una rotación sobre el eje X del sistema de coordenadas Gantry (Brazo). Cuando el ángulo de cabeceo del brazo es cero, el sistema de coordenadas Gantry Pitch (Cabeceo del brazo) coincide con el sistema de coordenadas Gantry (Brazo). La dirección de rotación positiva se produce en sentido horario cuando se ve desde el origen a lo largo del eje X positivo del sistema de coordenadas Gantru (Brazo). Sr es la fuente de radiación del generador de imágenes.

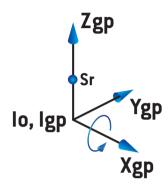
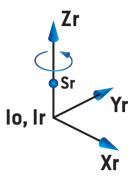



Ilustración 9. El sistema de coordenadas Gantry Pitch (Cabeceo del brazo).

El sistema de coordenadas X-Ray Image Receptor (Receptor de imágenes de rayos X) (Ilustración 10) tiene el sistema de coordenadas Gantry Pitch (Cabeceo del brazo) como su sistema madre y es una rotación sobre el eje Z del sistema de coordenadas Gantry Pitch (Cabeceo del brazo). Cuando el receptor de imágenes de rayos X es cero, el sistema de coordenadas X-Ray Image Receptor [Receptor de imágenes de rayos X] coincide con el sistema de coordenadas Gantry Pitch (Cabeceo del brazo). La dirección de rotación positiva se produce en sentido antihorario cuando se ve desde un punto en el eje Z positivo mirando hacia el origen. Sr es la fuente de radiación del generador de imágenes.

Ilustración 10. El sistema de coordenadas X-Ray Image Receptor (Receptor de imágenes de rayos X).

Sistemas de imagen de posicionamiento y generadores de imágenes de posicionamiento

En RayPlan, un sistema de imagen de posicionamiento consta de uno o varios generadores de imágenes de posicionamiento. Cada generador es una fuente de radiación de imagen con un receptor de imagen asociado. Los generadores de imágenes de posicionamiento pueden montarse en el brazo (gantry) o fijarse en la sala de tratamiento.

Generadores de imágenes de posicionamiento montados en el brazo (gantry)

Un generador de imágenes montado en el brazo (gantry) se mueve con un brazo (gantry), ya sea de tratamiento o de imagen. Un generador de imágenes montado en el brazo (gantry) puede tener una compensación del ángulo del brazo (gantry).

Un generador de imágenes montado en el brazo solo tiene una rotación del brazo; es decir, el sistema de coordenadas X-Ray Image Receptor (Receptor de imágenes de rayos X) coincide con el sistema de coordenadas Gantry (Brazo). La rotación del brazo viene dada por el ángulo del brazo del haz o haz de configuración, además de por la compensación del ángulo del brazo del generador de imágenes.

Generadores de imágenes de posicionamiento fijos

Un generador de imágenes fijo se instala en la sala de tratamiento. Un generador fijo puede tener las tres rotaciones: rotación del brazo, rotación del cabeceo del brazo y rotación del receptor de la imagen de rayos X.

EL ESTÁNDAR DE ETIQUETAJE DE MORDAZAS Y MLC 5.4

En RayPlan 2023B las mordazas pueden etiquetarse conforme a uno de los estándares IEC 61217 o IEC 601-2-1. La descripción de esta sección utiliza el ajuste Field coordinate system definitions [Definiciones del sistema de coordenadas del campo] de IEC 61217.

5.4.1 El estándar de etiquetaje de mordazas IEC 61217

En IEC 61217, Y2 está cerca del brazo y Y1 está alejado del brazo, X1 está a la izquierda y X2 a la derecha desde el punto de vista de un observador que esté mirando al brazo con un ángulo de cero grados del brazo y del colimador en el sistema de coordenadas IEC 61217.

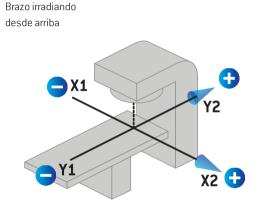
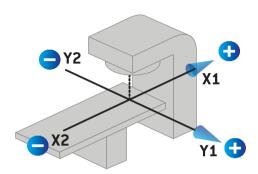



Ilustración 11. Las etiquetas de mordazas y MLC (IEC 61217).

5.4.2 El estándar de etiquetaje de mordazas IEC 601

En **IEC 601**, X1 está cerca del brazo y X2 está alejado del brazo, Y2 está a la izquierda y Y1 a la derecha desde el punto de vista de un observador que esté mirando al brazo con un ángulo de cero grados del brazo y del colimador en el sistema de coordenadas IEC 61217.

Brazo irradiando desde arriba

Ilustración 12. Las etiquetas de mordazas y MLC (IEC 601).

Nota:

El ajuste del estándar de etiquetaje de mordazas solo afecta a los nombres de los colimadores en RayPlan y al área de trabajo de las propiedades del equipo en RayPlan Physics. Tenga en cuenta que los ejes de las coordenadas siguen estando etiquetados según el estándar IEC 61217; por ejemplo, las etiquetas y los parámetros de curvas de dosis del área de trabajo del modelo de haz en RayPlan Physics.

6 INTEGRIDAD Y SEGURIDAD DEL SISTEMA

En este capítulo se describen los principales procesos relacionados con la integridad y la seguridad del sistema.

No es necesario que el usuario edite, agregue o elimine partes de los datos del sistema. Todas las modificaciones se deberán llevarán a cabo por personal de servicio especialmente capacitado. El personal de servicio puede ayudar a ajustar el sistema de acuerdo con las políticas de TI locales. Para obtener instrucciones sobre cómo configurar y mantener los controles de seguridad necesarios y recomendados para RayPlan, consulte RSL-P-RP-CSG, RayPlan Cyber Security Guidance.

Se pueden emitir alertas de seguridad del sistema si RaySearch tiene conocimiento de vulnerabilidades de seguridad. Las alertas de seguridad se pueden encontrar en RayCommunity (la comunidad de usuarios en línea de RaySearch).

En este capítulo

Este capítulo contiene las siguientes secciones:

6.1	Protección frente a usos no autorizados	p. 98
6.2	Rutinas de copia de seguridad y mantenimiento de bases de datos	p. 99
6.3	Permisos de acceso a la base de datos	p. 99
6.4	RAM ECC	p. 100
6.5	Puesta fuera de servicio del sistema	р. 100

PROTECCIÓN FRENTE A USOS NO AUTORIZADOS 6.1

La siguiente tabla muestra los distintos tipos de protección de RayPlan 2023B.

Tipo de protección	Descripción
Protección mediante contraseña	Todas las cuentas de usuario del sistema operativo deben estar pro- tegidas con una contraseña para evitar accesos no autorizados al sistema y a las bases de datos.
Seguridad de red	El riesgo de acceso a la red no autorizado debe ser evaluado por la organización del usuario. Se recomienda utilizar unas buenas prácticas de seguridad para proteger la integridad del entorno, por ejemplo, el uso de un cortafuegos en la red y la revisión periódica de seguridad de los equipos.
Protección frente a accesos físicos no autorizados	El riesgo de acceso físico no autorizado a una sesión sin supervisión debe valorarlo la organización. Se recomienda usar un tiempo de sesión ajustable por el usuario con el uso de las funciones de Windows Active Directory.
Protección frente a virus	Se debe instalar un antivirus de última generación en todas las partes del sistema, incluida la red informática completa si existe una. Además, se deben instalar actualizaciones automáticas o similares para mantener la protección actualizada.
Protección de licencia	RayPlan 2023B utiliza un sistema de protección con licencia basada en hardware para impedir que se realicen copias utilizables del sistema.
Bases de datos y sumas de verificación	Para impedir que se utilicen archivos de programa o de datos que no corresponden a la versión instalada de RayPlan 2023B, los archivos se protegen de los intercambios mediante sumas de verificación. La base de datos está diseñada de manera que los datos almacenados solo se puedan modificar con programas de RayPlan 2023B. Las sumas de verificación de los archivos de datos físicos impiden la modificación de los archivos, o la aplicación no se iniciará.
Privilegios del adminis- trador del sistema opera- tivo	Las herramientas que permiten acceder directamente a los datos al- macenados en las bases de datos deben configurarse de manera que se necesiten privilegios de administrador del sistema operativo para acceder a ellas.
Protección del código de programa	RayPlan 2023B solo se puede acceder y modificar el código de programa y los datos tal como se describe en los manuales. ¡No intente modificar el código de programa ni los datos!

6.2 RUTINAS DE COPIA DE SEGURIDAD Y MANTENIMIENTO DE BASES DE DATOS

Se debe utilizar una herramienta de administración de bases de datos SQL estándar para realizar copias de seguridad de las bases de datos y restablecerlas. Se recomienda configurar todas las bases de datos de RayPlan 2023B (RayStationPatientDB, RayStationMachineDB, RayStationClinicDB y RayStationResourceDB) en modo de recuperación completa. Esta opción permite realizar copias de seguridad periódicas y reduce el riesgo de perder datos si falla una base de datos.

Tipo de mantenimiento	Descripción
Copias de seguridad periódicas	Se deben programar copias de seguridad periódicas de todas las bases de datos de RayPlan y el funcionamiento de estas copias de seguridad se debe comprobar con regularidad.
	Copias de seguridad completas: Recomendamos realizar copias de seguridad completas con la frecuencia que el tiempo, el espacio y el uso del sistema permitan.
	Copias de seguridad diferenciales: Recomendamos realizar copias de seguridad diferenciales con la frecuencia que el tiempo, el espacio y el uso del sistema permitan o copias de seguridad diferenciales.
	• Copias de seguridad de los registros de transacciones: Recomen-
	damos realizar copias de seguridad de los registros de transaccio-
	nes cada hora, aunque la frecuencia se puede aumentar o disminuir en función de las necesidades clínicas específicas.
	Se recomienda realizar una copia de seguridad fuera del centro cada día.
Mantenimiento del sistema operativo del servidor SQL	Recomendamos comprobar la fragmentación en las unidades que contienen los archivos de datos SQL por si hay desfragmentación. Cuando la desfragmentación sea necesaria, esta debe llevarse a cabo durante los periodos de mantenimiento.
Indexación	Con las adiciones, modificaciones y cambios en los planes de los pacientes, las bases de datos (especialmente la base de datos de pacientes) pueden fragmentarse. Recomendamos incluir una tarea adicional para reorganizar las bases de datos en el plan de mantenimiento de bases de datos en un momento adecuado (por ejemplo, justo después de realizar una copia de seguridad completa una vez a la semana).

6.3 PERMISOS DE ACCESO A LA BASE DE DATOS

Por defecto, los permisos para acceder a las bases de datos incluyen todos los usuarios del dominio del directorio activo en el que están instaladas las bases de datos. Si se prefiere o es necesario, los

derechos de acceso de las bases de datos individuales pueden controlarse cuando se crean [consulte el apartado RayPlan Storage Tool [Herramienta de almacenamiento] en RSL-D-RP-2023B-USM, RayPlan 2023B User Manual). Para los cambios en ResourceDB, en support@raysearchlabs.com está disponible un procedimiento para restringir el acceso a un grupo de usuarios adecuado del directorio activo. El procedimiento deberá repetirse y el acceso deberá revisarse y confirmarse siempre que se actualice RayPlan 2023B.

6.4 **RAM ECC**

Se requiere una memoria con código de corrección de errores (RAM ECC) para la memoria CPU. Se trata de un tipo de almacenamiento informático de datos que puede detectar y corregir las formas más habituales de corrupción interna de datos.

PUESTA FUERA DE SERVICIO DEL SISTEMA 6.5

RayPlan almacena datos personales y relacionados con la salud. Al poner fuera de servicio un sistema, póngase en contacto con el servicio de asistencia técnica de RaySearch si es necesario para asegurarse de que todas las ubicaciones de almacenamiento de dichos datos estén identificadas.

A DEFINICIONES

Términos	Significado
BEV	Vista general de los haces
СВСТ	Tomografía computarizada de haz cónico
TC	Tomografía computarizada
DCR	Radiografía compuesta digitalmente
DICOM	Norma internacional para transmitir, almacenar, recuperar, imprimir, procesar y mostrar información de imágenes médicas
DVH	Histograma dosis-volumen
deg	Cuando aparece en RayPlan 2023B, el término "deg." hace referencia a los grados.
DMLC	Colimador multiláminas dinámico
DRR	Radiografía reconstruida digitalmente
DUE	Dosis uniforme equivalente
ROI externa	La ROI utilizada para definir el esquema del paciente. Define la región utilizada para el cálculo de la dosis, junto con BOLUS para el haz, SUPPORT ROI (ROI de soporte) y FIXATION ROI (ROI de fijación).
MdR	Marco de referencia
GUI	Interfaz gráfica de usuario
HDR	Alta tasa de dosis
IMRT	Radioterapia de intensidad modulada
LINAC	Acelerador lineal, unidad de tratamiento de radioterapia convencional.
MBS	Segmentación Basada en Modelos
MU	Unidades de monitor
OAR	Órgano en riesgo
POI	Punto de interés
ROI	Región de interés

Términos	Significado
Geometría de la ROI	La representación geométrica específica del conjunto de imágenes de una ROI
SMLC	Colimador multiláminas estático
SSD	Distancia fuente superficie
SUV	Valor de captación estándar
SVD	Descomposición en valores singulares
UI	Interfaz de usuario
VMAT	Arcoterapia volumétrica modulada

ÍNDICE

С	n		
Curva de dosis	P		
sistemas de coordenadas 91	Permisos de acceso a la base de datos 99 Precauciones de seguridad 26		
D	Precisión motor de dosis de fotones 16		
Definiciones 102 Documentación asociada 9	Precisión del motor de dosis de fotones 16 Protección de licencia 98 Protección frente a usos no autorizados 98		
E	Protección frente a virus 98		
Entorno de comunicación de datos 74 Escalas del equipo 75	Prueba de aceptación del entorno del sistema 74		
Estándar de etiquetaje de mordazas 94 Etiqueta 22	R		
Etiqueta del producto 22	Representantes autorizados 14 Rutinas de copia de seguridad 99		
F	. 5		
Field coordinate system definitions Ajuste 81	S		
Н	Sistema de coordenadas curva de dosis 91		
Hardware 12	Sistema de coordenadas de apoyo del paciente 85		
I	Sistema de coordenadas del brazo 80 Sistema de coordenadas del dispositivo limitador		
Importación de datos de pacientes 72 Información de contacto 13	de haz 81 Sistema de coordenadas del equipo de tratamiento 78–79		
N	Sistema de coordenadas del filtro de cuña 84 Sistema de coordenadas del paciente 76		
Nombre del producto 22 Notificación de errores 13 Número de compilación 22 Número de compilación del software 22	Sistema operativo 12 Sistemas de coordenadas sistema de coordenadas del paciente 75 sistemas de coordenadas del equipo de tratamiento 75		

U

Uso previsto 12 Usuario previsto 12

٧

Versión del producto 22 Vigencia 23

INFORMACIÓN DE CONTACTO

RaySearch Laboratories AB (publ) Eugeniavägen 18C SE-113 68 Stockholm Sweden

Contact details head office

P.O. Box 45169

SE-104 30 Stockholm, Sweden

Phone: +46 8 510 530 00

Fax: +46 8 510 530 30

info@raysearchlabs.com

RaySearch Americas

Phone: +1 877 778 3849

RaySearch France

Phone +33 1 76 53 72 02

RaySearch Singapore

Phone: +65 81 28 59 80

RaySearch Belgium

Phone: +32 475 36 80 07

RaySearch Japan

Phone: +81 3 11 N5 69 N2

RaySearch UK

Phone: +44 2039 076791

RaySearch China

Phone: +86 137 0111 5932

RaySearch Korea

Phone: +82 10 2230 2046

RaySearch Australia

Phone: +61 411 534 316

