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ABSTRACT

The use of scanned proton beams in external beam radiation therapy has seen a rapid development over
the past decade. This technique places new demands on treatment planning, as compared to conven-
tional photon-based radiation therapy. In this article, several proton specific functions as implemented in
the treatment planning system RayStation are presented. We will cover algorithms for energy layer and
spot selection, basic optimization including the handling of spot weight limits, optimization of the linear
energy transfer (LET) distribution, robust optimization including the special case of 4D optimization, pro-
ton arc planning, and automatic planning using deep learning. We will further present the Monte Carlo
(MC) proton dose engine in RayStation to some detail, from the material interpretation of the CT data,
through the beam model parameterization, to the actual MC transport mechanism. Useful tools for plan
evaluation, including robustness evaluation, and the versatile scripting interface are also described. The
overall aim of the paper is to give an overview of some of the key proton planning functions in RaySta-
tion, with example usages, and at the same time provide the details about the underlying algorithms that
previously have not been fully publicly available.

© 2023 The Authors. Published by Elsevier Inc. on behalf of American Association of Medical
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Dosimetrists.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

RayStation is a treatment planning system (TPS) for exter-
nal beam therapy, brachytherapy, and boron neutron capture
therapy (BNCT) that is developed, sold, and maintained by the
Swedish software company RaySearch Laboratories AB. RaySearch
was founded in 2000 and initially provided various plugins to
other vendors’ TPSs, perhaps most notable the IMRT optimization
engine for the Pinnacle TPS (Philips). In 2008, RaySearch decided
to develop and sell a complete TPS directly to the end user, and
the first clinical version of RayStation was released in 2010. This
first release was limited to planning for IMRT and VMAT photon
treatments, but support for proton planning was part of the origi-
nal scope and the very first RayStation contract was indeed signed
with a proton clinic, the Westdeutsches Protonentherapie-zentrum
Essen (WPE), in 2009. Mainly due to the lack of available dosimet-
ric data at these early days of proton therapy, the clinical release
of the proton planning in RayStation was delayed, but, in 2014,
the first proton treatment with a plan created in RayStation was
delivered at the Provision Center for Proton Therapy in Knoxville,
Tennessee. Since then, more than 100 clinics around the world
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have chosen RayStation for their proton treatment planning, a fig-
ure representing a majority of proton centers that are in opera-
tion, under construction, or in the planning stage.! This rapid suc-
cess can likely be explained by the fact that RayStation emerged
just in time to support the near explosive growth in the number
of proton centers worldwide, and that RayStation was built with
the needs of this relatively new modality in mind from day one.
Robust optimization, 4D optimization, fast Monte Carlo (MC) dose
calculations, and, in later years, linear energy transfer (LET) evalu-
ation and optimization are just a few examples of features orig-
inally introduced in RayStation, that have added to its popular-
ity. Another reason for the wide spread of RayStation in the pro-
ton community is the fact that RayStation has been adapted to a
plurality of proton delivery systems. Today, RayStation is in clini-
cal use at sites with delivery systems from: IBA, Varian, Mevion,
Hitachi, Sumitomo Heavy Industries, P-Cure, Mitsubishi, ProNova,
plus a variety of “home-built” synchrotron-based systems for reg-
ular treatments and low-energy single scattering systems for ocu-
lar treatments. RayStation further supports the following delivery
techniques: pencil beam scanning (PBS), quasi-discrete PBS, line
scanning, double/single scattering (DS/SS), uniform scanning, and
wobbling.

In this paper, we mainly focus on RayStation functionalities that
are related to optimization and dose calculation of scanned pro-
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ton beams. Other vital functionalities in the planning process, such
as patient modeling, deformable image registration, and fallback
planning have to some degree been covered in a previous general
overview of RayStation? and will not be included here. The aim of
this publication is to present the planning process in general, and
to give a relatively detailed explanation of the fundamental algo-
rithms and their underlying mechanisms, descriptions that previ-
ously have only been partly available through product documents
(e.g., users and reference manuals) and white papers. All descrip-
tions in this paper relate to RayStation 2023B, the currently latest
released clinical version.

Plan Optimization

This section will describe the creation of a proton plan by op-
timization. We will start from the point where the empty beams
of a plan have already been created, but the patient-specific beam
devices and optimization settings are yet to be defined.

Range shifters, apertures, and ridge filters

For most proton delivery systems, an energy absorbing range
shifter must be used for shallow targets (ranges below 4-7 cm). In
RayStation, the use of a range shifter is normally selected manually
per field but may optionally be automatically added when needed.

RayStation supports the use of patient-specific collimators with
PBS beams. The collimator may be a milled-out block aperture or
a multi leaf collimator (MLC). The dynamic MLC of the Mevion
Hyperscan delivery system?® is also supported. The aperture/MLC
shapes are determined prior to the optimization as the geometrical
projections of the target(s) including user-defined, non-isotropic
margins. Blocking of risk organs may also be defined for the colli-
mation. When (MLC) collimation is done for each energy layer in-
dividually, the aperture openings are determined as the projection
of the target at the Bragg peak depth of each energy.

Some delivery systems have very narrow pristine Bragg peaks
at lower energies and may benefit from using a ridge filter to de-
crease the number of energy layers and thereby the delivery time.
This is common for synchrotron-based systems, but a recent study
shows that ridge filters also can be used to significantly decrease
the delivery time for cyclotron systems and thereby increase the
window for cases tolerating breath hold techniques.* RayStation
does not have explicit support for ridge filters, but the effect can
be implicitly included via the beam data used for beam modeling.
For such ridge filter models, it is possible to include the identity of
the ridge filter in the exported DICOM plan.

Spot and energy layer selection settings

Before an optimization starts, the target is analyzed in terms
of radiological depth to the most proximal and distal points over
the lateral plane, as well as its projection on the fluence plane
for each field. Based on this target information and a multitude
of user-defined settings, the energy layers and spot positions are
selected. The energy layer spacing can either be determined au-
tomatically, based on the 80% widths of the Bragg peaks in the
machine model scaled by a user-defined factor, or be set to a con-
stant water-equivalent thickness (WET). The user may further de-
fine any number of additional proximal and distal energy layers.
While these extra layers normally are not needed, there can be
cases with inhomogeneous geometries and small targets where the
raytracing used to define target depths is insufficient.

The spot pattern can be chosen as hexagonal (default), or
square, and the direction of the pattern can be chosen freely to,
e.g., align it with the fast scan direction of the delivery system. Just
like for the energy layer selection, the spot spacing can be chosen

as automatic or as a fixed value. For the automatic option, the spot
spacing is determined as 1.06 times the average spot size (1) in
the patient at the Bragg peak depth, multiplied by a user-defined
scaling constant. For most patients and delivery systems, the auto-
matic option with a scaling constant of 1 works well, but for sys-
tems with very large spots, a decrease of the spot spacing scaling
factor to ~0.6 may improve the plan, especially when used in com-
bination with apertures. The lateral margin of the spot placement
relative to the target volume can also be determined using an auto-
matic with scale option, or as a constant value. The lateral margin
is needed to achieve full target coverage without creating hot spots
at the target border, but if a higher dose at the target edge can be
tolerated, a target margin of 0 may be used to minimize the lat-
eral penumbra. When robust optimization is used, additional target
margins based on the magnitude of the uncertainties are automat-
ically added to these user-defined values.

Other ways to control the spot placement in RayStation include
the OAR range margin, where Bragg peaks may only be placed up
to a given proximal distance from selected ROIs, as well as the op-
tion to set minimum and maximum radiological depths. The latter
function may be used to avoid placing spots at the skin when shal-
low tumors are treated, or when employing a field-in-field tech-
nique where a range shifter is only used for the shallow field.?

To mitigate effects from organ motion, it is further possible to
specify a layer repainting strategy. The number of paintings can
either be specified by a constant number per beam or be based
on a maximum meterset per layer or spot.® In the former case,
the number of paintings is the same for all layers in the beam,
whereas in the latter cases, the number of paintings varies over
the different energy layers. The repainting instruction can either be
communicated to the delivery system by a single number given per
energy layer, or as an explicit delivery sequence with all repainted
layers included in the DICOM file.

Optimization algorithm

The dose-based optimization of a treatment plan, also referred
to as inverse planning, is a technique where the clinical goals of
a plan are achieved through iterative adjustments of the plan pa-
rameters using a numerical optimization method. The optimization
principle of scanned proton beams is straightforward since the op-
timization variables are the spot weights, which contribute to the
dose in a linear fashion. The optimization engine in RayStation is
gradient-based and uses a sequential quadratic programming algo-
rithm.” The algorithm employs a quasi-Newton approximation of
the Hessian of the Lagrangian that is updated using the Broyden-
Fletcher-Goldfarb-Shanno approach. In each iteration, a better ap-
proximation of the Hessian is obtained, but it also becomes more
computationally costly to use.® As a consequence, the optimiza-
tion time increases superlinearly with the number of iterations, an
effect that explains the sometimes rather extended optimization
times for plans with a high number of spots and where the num-
ber of iterations has passed ~100.

When a new optimization is started in RayStation, the target
is analyzed, and energy layers and spot positions are selected as
described in the previous section. A starting guess of the spot
weights is then determined by analytical means,® where it is as-
sumed that the beam doses will completely overlap the target.
This method works very well for cases like single field uniform
dose (SFUD) optimization'? of a prostate but becomes less effec-
tive for cases where the beam doses do not overlap fully, such
as cranio-spinal plans, which may require a few extra iterations
for the dose to stabilize. The spot doses are then computed ac-
cording to the settings for the optimization dose calculation (see
Sec. Statistics). With the GPU-based MC algorithm this should nor-
mally be a fast process (~10 seconds), but to avoid computing the
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same dose twice, a so-called spot cache is implemented in RaySta-
tion which stores spot doses between consecutive optimizations.
The spot doses are stored in the cache until a change is made
that would either affect the dose calculation (e.g.,, a change in the
patient geometry or the snout position) or the spot pattern (e.g.,
some change in the spot selection parameters, the definition of
the target volume through the target optimization functions, or
robustness settings). The importance of the spot cache becomes
greater for demanding cases such as large volume/very small voxel
plans, or a robust optimization using the option of accurate sce-
nario dose calculation (see further Sec. Approximate and accurate
scenario doses).

The optimization continues until any of the 3 following criteria
is fulfilled: (1) the change of the optimization objective function
value has fallen below the optimization tolerance for 3 consecu-
tive iterations, (2) the maximum number of iterations has been
reached, or (3) no improving direction can be found. The tolerance
and the max number of iterations are user-defined parameters. The
user can also terminate the optimization manually at any time.

After an optimization has stopped, it may be started again using
the Continue optimization function which resumes the optimization
from the point it was stopped. This can be useful for example after
smaller adjustments to the optimization functions, or when spots
have been manually removed. However, it should be noted that a
repeated use of continued optimizations may lead to a different so-
lution compared to that of a full restart. One reason being that the
spot filter function might remove spots several times. When possi-
ble, it is advisable to always start an optimization from scratch, at
least when a significant change to the plan setup or the optimiza-
tion problem has been made.

Optimization functions

An optimization problem in RayStation is formulated with an
objective function whose value is to be minimized iteratively by
alteration of the spot weights. The objective function consists of
one or several user-defined optimization functions of the type:
min/max/uniform dose, min/max DVH, min/max/target EUD, and
dose fall-off, that operate on the dose within one ROI specified
for each function.!’"'2 The dose fall-off objective is a max dose
objective that penalizes dose above a dose level that changes as
a function of the distance to the target and is therefore ideal to
use for penalizing the dose outside of the target volume, omitting
the need for creating ring structures around the target. The opti-
mization functions included in the objective function are assigned
weights reflecting their relative importance. The value of an opti-
mization function in RayStation is further divided by the volume
of the ROI the function is specified for. This means that a hot spot
in a small ROI will have a larger impact on the optimization than
a similarly sized hot spot in a larger ROI The value is also normal-
ized to the dose level of the function, meaning that the value of
the function is determined by the relative dose deviation. For ex-
ample, an overdose of 5 Gy for a max dose function with a dose
level of 50 Gy will give the same penalty as an overdose of only
1 Gy if the dose level is set to 10 Gy. Optimization functions with
small dose levels must thus be given small weights in order not to
dominate the optimization.

A unique feature in RayStation is that an optimization function
can be defined as beam-specific, meaning that the function value
is determined by the dose from a single beam. An objective func-
tion may include a mix of normal and beam-specific optimization
functions. The beam-specific functions can be used to create SFUD
plans, but also allow for distributing the responsibility of treating
various sub-volumes of a target among the different beams. A typ-
ical example would be a head and neck case where a beam from
the left (right) should take care of the left (right) side of the head,

thus avoiding crossing of the brain stem. Beam-specific functions
also affect the spot selection. When a beam has been associated
with a dose driving beam-specific function, the target used for the
energy layer and spot selection of that beam will be replaced by
the ROI of the beam-specific function (plus any other ROIs that are
associated to a dose driving beam-specific function for the same
beam). This feature may be used to control the spot placement in
an optimization, also when the optimization functions shall only
depend on the total dose. To accomplish this, beam-specific func-
tions with a weight equal to zero are used. An example of this
is the creation of graded junctions for a cranio-spinal irradiation
(CSI) where zero-weighted beam-specific functions can be used to
define the overlap of spots from adjacent fields, and thereby the
length of the junctions, while total dose robust functions for the
entire CTV are used to create the smooth junctions of the beam
doses, and a uniform total dose within the CTV.

In RayStation, an optimization function can optionally be de-
fined as a constraint that must be fulfilled in the optimization. The
optimal solution to an optimization problem is then the one that
gives the best value of the objective function without violating any
of the constraints. While constraints sometimes can be useful in an
optimization, they should be handled with some caution. If more
than one constraint is defined for an optimization, it is of pivotal
importance that they are not in mutual conflict so that all con-
straints in the optimization can be fulfilled. This is in opposition
to how optimization functions work, where the optimizer will find
a well-defined (Pareto optimal) trade-off between conflicting func-
tions. Another reason to be careful with an extensive use of con-
straint is that the convergence of the optimization becomes slower
compared to an optimization without constraints. A reason for this
is that the optimization algorithm requires one gradient calcula-
tion for the objective function, and an additional one for each con-
straint. Thus, it can speed up the treatment planning process to
run an initial optimization without constraints to see what can be
achieved, followed by adding constraints in a subsequent round of
optimization to precisely control, e.g., the max dose. Furthermore,
when using constraints, it can be beneficial to include an identical
function in the objective, to help steering the optimization in the
right direction.

RayStation also provides the possibility of defining optimization
functions on the minimum and maximum dose-averaged linear en-
ergy transfer (LET4) in addition to dose. Since LETy is a property
that does not scale with fluence and dose, high LET; values may
be found outside the target in volumes where the dose is so low
that the LET, level has no significant biological impact. To exclude
these low dose volumes from the optimization, the max LET, func-
tion is accompanied with a dose threshold that filters out those
volumes in the function evaluation. Just like any other function
in RayStation, the LET4 functions may be defined as being beam-
specific, constraints, and/or robust. Robust max LETy functions may
be a particularly important use-case for patients with risk organs
just distal to a target, considering the range uncertainty and the
expected elevated biological effective dose at the distal end of a
proton field.”

Spot and energy layer weight limits

Most proton PBS delivery systems have a lower limit for the
spot meterset. In order to create a deliverable plan, a common ap-
proach has previously been to apply a spot filtering step after the
optimization is completed.'* However, this post-processing filter-
ing can seriously deteriorate plan quality, especially for plans with
several overlapping fields.* In RayStation, the minimum spot me-
terset is instead considered in the optimization, where the filtering
is performed after a user-specified number of iterations, typically
at iteration 20. The optimization then continues so that plan qual-
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ity can be restored. At the spot filtering iteration, the spots in each
energy layer are sequentially filtered out and the weight of a re-
moved spot is added to the immediately following spot to avoid an
excessive removal of spots with weights just below the minimum
limit. To ensure that the spot weights do not fall below the mini-
mum spot weight when the optimization continues, the minimum
spot weight is used as a lower bound in the continued optimiza-
tion. It is also possible to define an upper limit to the spot weights,
which is then enforced from the beginning of the optimization. If
the spot filtering iteration is set to 0, no spots will be removed,
and the lower and upper spot weight bounds are applied from the
first iteration. This can for example be useful when Continue opti-
mization is used in RayStation.

It is further possible to define a minimum energy layer meter-
set in RayStation, which removes all energy layers whose meterset
falls below the limit at the spot filtering iteration. The energy layer
lower limit is then included as a lower bound in the continued op-
timization.

The default spot and energy layer weight limits are defined in
the beam model. However, those values may be overridden on a
plan-by-plan basis by the user. For example, by using a higher min-
imum spot weight limit than that stipulated by the delivery sys-
tem, the user has the possibility to explore the balance between
delivery speed and plan quality.

After the spot filtration, the spot sequence can optionally be
sorted, taking different scan speeds in the x- and y-directions into
account, to make the traversal of the scanning beam as fast as pos-
sible.

Robust Optimization

In traditional treatment planning, uncertainties during the
setup and delivery are handled by expanding the clinical target
volume (CTV) with a uniform margin to create a planning target
volume (PTV)."> However, due to the higher dose conformity and
the introduction of range uncertainties in proton planning, the PTV
concept does not always work so well for this modality.’® The so-
lution to this problem is robust optimization, where the uncertain-
ties are explicitly included in the optimization, which then is per-
formed on the CTV and original risk organ volumes directly.!”-18

RayStation employs a scenario-based robust optimization tech-
nique, where the dose in each iteration is computed for a num-
ber of “error” scenarios, each representing a specific combination
of setup error, density error, and patient image set. In RayStation,
each optimization function can optionally be labeled as a robust
function and the objective function may contain a mix of non-
robust and robust functions.

The uncertainties can be treated as systematic, meaning that
the same error occurs throughout the treatment course, or ran-
dom, meaning that different errors may occur in each fraction. For
systematic uncertainties, RayStation employs worst-case (or “min-
imax”) optimization,”” where the optimization aims to minimize
the function value in the worst scenario. If more than one robust
function is included, the optimization strives to minimize the sum
of the function values of all robust functions in the worst scenario.
The reason for considering the worst-case sum of function values
instead of, e.g., the sum of the worst-case value for each function
individually is that only physically realizable scenarios should af-
fect the optimization, and not unphysical combination scenarios
where, for example, the patient moves to the left when the CTV
function is evaluated but to the right when the OAR function is
evaluated.'

When the uncertainties are treated as random (or interfrac-
tional), a scenario in the optimization is constructed as the sum of
the dose in each fraction of the treatment course, where one error
scenario is randomly selected for each fraction.? The optimization

is performed on the average function value of all simulated treat-
ment course scenarios. To cover the many possible combinations
of errors in the fractions, a large number of treatment course sce-
narios should be included in the optimization (the default num-
ber is 3000 for 3 systematic density errors). In the limit of a sin-
gle fraction treatment course, the random uncertainty option will
give a similar result as if systematic uncertainties had been consid-
ered,?! while in the limit of many fractions, the random optimiza-
tion will give the same result as optimizing the average dose of
all considered single fraction scenarios. When random uncertain-
ties are considered, the resulting plan may underdose the target
or overdose the OARs in the nominal scenario, i.e., the case where
no uncertainty is considered. To maintain the dose of the nomi-
nal scenario, non-robust functions can be applied to the structures
that have been associated with random robust functions.

Only setup errors and patient images can be handled as random
over the fractions, while the density errors are always considered
to be systematic.

Setup and density error scenario sampling

The number of scenarios in a robust optimization depends on
the magnitude of the setup and range uncertainties. For setup er-
rors (es) up to 5 mm, 2 initial setup scenarios are created for each
dimension: (-es, es) giving a total of 7 initial setup scenarios for 3
spatial dimensions, including the non-shifted nominal scenario. For
density errors (eq) up to 5%, 2 initial density scenarios are created
giving a total of 3 initial density scenarios (-eg4, 0, eq). Each combi-
nation of initial setup and density scenarios is then considered re-
sulting in a total of 21 scenarios for the optimization assuming sys-
tematic errors. For larger uncertainties, additional initial scenarios
are created to ensure that the scenario sampling is not too sparse.
These extra scenarios may be created both along the major setup
error axes, as well as in diagonal directions depending on the pro-
jected magnitude of the setup errors in these directions.

When the error scenarios are created for the optimization, the
patient setup may be chosen to be the same for all beams in a
plan, to be different (independent) for beams belonging to differ-
ent isocenters, or to be different for all beams. This choice will
greatly affect the number of evaluated error scenarios in the op-
timization. In the example above, with 7 setup scenarios, it is as-
sumed that the setup error is the same for all beams in the plan.
If we instead assume that the plan has 2 different isocenters with
2 beams associated to each isocenter and we use the indepen-
dent isocenter option, the number of initial spatial error scenar-
ios becomes 72 =49, resulting in a total of 147 scenarios when
combined with the density scenarios. If we now assume that the
setup uncertainties are independent for all 4 beams, the spatial er-
ror scenarios become 74=2401, resulting in a total of 7203 sce-
narios. Although optimization with this large number of scenarios
is fully possible in RayStation, the optimization time will suffer. To
reduce the number of scenarios when using independent isocen-
ters/beams, it is possible to restrict the independence to 1 or 2
directions. A suitable use case for systematic robust optimization
with independent setup errors is the creation of graded junctions
of a 4-field CSI case, with 2 fields sharing an isocenter in the brain
and with 2 additional fields, each with separate isocenters along
the spine.’? Here we use the independent isocenter option, but
only to be evaluated as independent in the superior-inferior direc-
tion along the spine. If we further only consider setup errors (since
density errors affect the dose only marginally due to the shallow
target), the problem reduces to manageable 33 +4=31 scenarios,
which will optimize swiftly. The independent setup error option in
RayStation was indeed originally developed with the CSI case in
mind, although the function has found a considerable wider use
since then.
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4D optimization

4D optimization is a technique where multiple images of the
patient are considered simultaneously in an optimization. The
most wide-spread example is probably the 4D optimization of a
lung case using a 4D image dataset, a technique that for protons
has been shown to be superior compared to the traditional method
of optimizing on an average CT using an ITV.23.24

While robust optimization of a 4D image dataset may be the
obvious use case for 4D robust optimization, there are also other
usages. One interesting example is the mitigation of unknown air
cavities for a pelvic patient. This can be accomplished in RaySta-
tion by first making a copy of the planning CT, assigning air as
override material for selected volumes of the rectum/intestines in
the copied CT, and then include it in a 4D robust optimization.2”
When the motion of an internal organ is not known, RayStation
can simulate this motion by creating a series of deformed images
using the Simulate organ motion tool, images that then can be used
in a 4D optimization. A typical example here is the daily random
motion of the prostate.

4D optimization is a natural extension of the scenario based ro-
bust optimization in RayStation, where the additional images sim-
ply form additional scenarios. It may be used in combination with
setup and density uncertainties, which then create additional sce-
narios for each included image. As an example, if 5 images are
used for the 21-scenario systematic error case described above, a
total of 5 x 21=105 scenarios will be evaluated in each iteration.

When the multiple images are chosen to represent random, in-
terfractional anatomical changes, optimization is performed using
treatment course scenarios consisting of image and setup error
fraction scenarios as described for random setup errors above. In
addition to treating the multiple images as systematic or random,
they may also be chosen to represent “free breathing” (intrafrac-
tional) motion. Optimization considering intrafractional motion is
performed on a dose that is the sum of equally weighted partial
doses computed on the individual images and deformed to the
planning image. In the absence of setup and density errors, the
number of scenarios for a 4D optimized “free breathing” case is
therefore always 1, although doses are computed on all included
images in each iteration.

Approximate and accurate scenario doses

In scenario based robust optimization, the individual spot doses
must be computed for every scenario before the optimization
starts. The scenario spot doses are then used to compute the to-
tal dose in each iteration, which in turn is used to evaluate the
robust function values. In RayStation there are 2 options for com-
puting the scenario doses: the accurate and the approximate meth-
ods. When accurate scenario doses are used, the scenario spot
doses are explicitly computed in the same way as the nominal
spot doses in a non-robust optimization. To save computer mem-
ory (RAM), only doses within structures associated to robust opti-
mization functions are stored. This is the most accurate method
but may result in long optimization times and consume signifi-
cant amounts of RAM, especially when many scenarios are eval-
uated and when large structures (e.g., the External ROI) are associ-
ated with a robust function. To avoid excessive optimization times,
the approximate option should be used. The scenario spot doses
are then determined from the nominal spot doses by means of
linear interpolation of the neighboring spots in the same energy
layer (setup errors), and interpolation from neighboring spots with
higher and lower energy (density errors).25 To minimize the inter-
polation error, additional spot doses are computed in areas (po-
sition and range/energy) where nominal spots are absent or too
sparse.?! These auxiliary spots are only used in the approximate

dose calculation and are not included in the spot map of the plan.
Even though the auxiliary spots are stored in the spot cache, new
spot doses must often be computed when robust plans using Ap-
proximate scenario doses are optimized a second time. This is be-
cause the spot filtering alters the spot pattern so that new auxiliary
spots have to be computed in subsequent optimizations.

For RayStation robust plans employing a collimator, accurate
scenario dose computation is mandatory. This is motivated by the
fact that the influence of the collimator edge for different setup
scenarios does not lend itself well to the interpolation technique
employed by the approximate method.

Proton Arc Planning

Proton arcs can in general be divided into 2 different types: dis-
crete and dynamic proton arcs. Discrete arcs (also known as static
arcs) employ step-and-shoot delivery over a large number of dis-
crete gantry angles with multiple energy layers per angle, while
dynamic arcs deliver the protons while rotating the gantry with
one energy layer per discretized direction. From a delivery per-
spective, a discrete arc plan is equivalent to a normal PBS plan, but
with more beams than usual. In RayStation, a discrete arc beam is
defined by its start and stop gantry angles, rotation direction, as
well as the number of discrete directions. As input to the opti-
mizer, the user also specifies the number of initial energy layers
to be setup over the arc beam, and the final number of energy lay-
ers in the resulting plan. Throughout the optimization, the lowest
weighted energy layers are filtered out in several cycles to reach
the final number of energy layers at the iteration for spot filtering
(iteration ~100). This process aims at automatically selecting the
most beneficial energy layers over all directions. The main benefit
can be seen in reduction of OAR doses and consequently in NTCP
values.?” Note that the number of iterations for a proton arc op-
timization needs to be higher than for a normal PBS plan, since
the energy layer selection process needs to be performed over a
sufficiently large number of iterations.

Since current proton therapy systems do not yet support the
delivery of multiple gantry angles in the same beam, RayStation
can convert an arc plan into a conventional PBS plan in a single
click. This means that the advantages of proton arc optimization
could be introduced at any proton PBS facility even today. How-
ever, the multitude of beams may result in long delivery times.
This could be remedied by partitioning the discrete arc plan into
subplans to be delivered over different fractions.?®

RayStation has support for dynamic arc optimization in research
versions,2? and it will be available in the clinical system when the
treatment machines are capable of delivering protons while rotat-
ing the gantry. Such technological development will speed up the
delivery, both for dynamic and discrete arcs. With the advent of
upright treatments, a natural and cost-efficient alternative for pro-
ton arc delivery is to use a fixed proton beam in combination with
a rotating patient in a seated position. The algorithms for discrete
and dynamic arc optimization in RayStation are equally well-suited
for a rotating patient as for a rotating gantry.

Deep Learning Planning

In the traditional planning workflow, it is often necessary to up-
date the optimization functions iteratively to achieve the clinical
goals of the plan. This can sometimes be a time-consuming process
and sets high demands on the planner for complicated cases. With
automatic deep learning (DL) planning, this workflow is replaced
by a model that can generate high quality clinical plans consider-
ably faster. Each DL model is associated to a particular treatment
site and protocol and needs to be trained on a large set of clini-
cal plans. In addition to a reduction in time, DL planning provides
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higher consistency over a patient cohort and is not dependent on
individual planners.

Automatic DL planning in RayStation consists of 2 steps. First,
a 3D dose distribution is predicted by analyzing selected target
and at risk organ structures of the particular patient. The model
may subsequently make additional adjustments to the DL pre-
dicted dose based on DVH metrics, such as increased target cov-
erage or sparing of certain OARs.?° In the second step, a deliver-
able plan is created based on the predicted dose. This is accom-
plished by a so-called dose mimicking optimization, which gener-
ates a plan with a dose as close to the predicted dose as possible.
It is important to note that the dose mimicking can be robustly op-
timized, thus ensuring that plan robustness is not lost in the dose
prediction. After the DL plan has been created, continued manual
optimization is possible as an optional final step.

The dose prediction model in RayStation is based on a 3D U-
Net architecture,’! and each model is trained on plan dose and se-
lected ROI geometries from a significant number of clinical cases
of the treatment site and protocol at hand. CT image data, or any
other patient-specific data besides dose and ROIs, is not used. In
the training, the model parameters are iteratively updated to min-
imize the difference of the output 3D doses and the plan dose
distributions of the patients. The model training is currently per-
formed at RaySearch in collaboration with partnering clinics. Note
that other machine learning models than the 3D U-Net have been
previously used in RayStation, e.g., a random forest model.>?

A recent study has shown that RayStation DL-generated proton
plans are of similar quality as traditionally optimized clinical treat-
ment plans,?® and automatic DL planning for protons using RaySta-
tion is in regular clinical use for oropharyngeal cancer patients at
University Medical Center Groningen in the Netherlands.?? It is ap-
proved for clinical use in countries accepting the CE marking (e.g.,
in Europe), as well as a few additional markets.

Postprocessing

Once a proton plan has been created, either using optimiza-
tion or DL-planning, RayStation offers a wide range of tools for
manual adjustments. The meterset of the plan may be automati-
cally, or manually adjusted to fulfill the prescribed dose. Individ-
ual spots can be moved, added, or removed, and spot weights may
be adjusted. Spots below a specified weight may be filtered out,
although this is better handled by the optimization (see above).
Aperture, and static MLC openings may be edited by using a brush
tool in the beams eye view (BEV). Even the energies of energy lay-
ers can be manually edited.

Dose Computation

In this section we will describe the proton dose calculation in
RayStation, including the material interpretation of the CT data,
and beam model. We will only describe the MC dose engine, and
not the analytical dose engine in RayStation. This is motivated by
the fact that MC has proven to be superior to analytical algorithms
for protons,>*-3% and that the MC dose calculation in RayStation
now often is faster than the analytical.

CT to stopping power conversion

The MC dose engine in RayStation requires a full material de-
scription of the patient in each voxel. The material composition is
expressed as mass density, mass fraction of atomic elements, w(Z),
and mean ionization energy, I. All cross-sections used in the dose
calculation, including stopping power, are then determined from
these material properties. The material composition is determined
from the CT image data, and from user-defined material overrides

of selected structures. For voxels covered by structures associated
with a material override, this data is directly given by the prop-
erties of the override material. For the other voxels, the material
information is interpreted from the CT data by the user-defined CT-
to-mass-density, or CT-to-relative stopping power (RSP) calibration
curves. The CT calibration curves are defined in RayPhysics (see be-
low), but the method to determine them is outside the scope of
this paper. The elemental composition and mean ionization energy
of the voxels are determined by associating one of 75 CT mapping
materials to each voxel. The CT mapping materials have been de-
termined by interpolation from 16 established human tissue and
metal core materials originating from the ICRU 44 and ICRP 23 re-
ports.>”-3% When a CT-to-mass-density curve is used the mass den-
sity of a voxel is directly given by the calibration curve, while the
CT mapping material associated to the voxel is the one that is clos-
est in mass density to the mass density of the voxel. It should be
noted that the mass density of the voxel is still the one given by
the calibration curve, and not by the CT mapping material. For CT-
to-RSP calibration, the associated CT mapping material will be the
one that is closest in RSP to that of the voxel, as given by the cal-
ibration curve. The mass density for the voxel is then determined
so that the voxel RSP from the CT calibration curve is exactly re-
constructed in the dose calculation for the associated CT mapping
material at a proton energy defined with the CT-to-RSP calibration
curve.

RayStation also supports the import of RSP image maps, which
can be produced by some dual-energy CT scanners. The RSP im-
ages can be used for planning and dose calculation as any other
CT image in RayStation, and several studies have shown that the
range uncertainty in plans based on RSP maps can be significantly
reduced compared to plans based on conventional CTs.?40 These
images are exported from the scanners as normal CT images and
the RSP values in the images have typically been converted to inte-
ger values of similar magnitude as HU-based CT images. For these
images, the CT-to-RSP calibration curve in RayStation will simply
comprise 2 points that will scale the imported values to absolute
RSP, and no calibration of the curve is needed.

Dose calculation on CBCT

In RayStation it is possible to compute the dose based on Cone
Beam CTs (CBCTs) by the generation of synthetic CTs (sCT). This en-
ables the evaluation of the daily delivered dose without having to
record a re-CT, and may serve as a trigger for potential replanning.
For the current version of RayStation, an sCT cannot be used as a
planning image in a new plan, but only for evaluation.

RayStation hosts 2 algorithms for the creation of sCTs. The first,
the corrected CBCT algorithm (cCBCT), aims at removing artifacts
from the CBCT image and converting the CBCT intensity values to
correspond to the HUs of the planning image. This is an iterative
algorithm where the HU conversion is first established by corre-
lating the intensity values in voxels of the CBCT, to correspond-
ing voxels in the planning CT by means of deformable registration.
Low-frequency artifacts in the CBCT are then filtered out and cor-
rected for, after which the process repeats. If the CBCT has a lim-
ited field of view (FOV), the missing volumes may be deformably
added to the CBCT from the planning CT. The second method is the
Virtual CT method (vCT), which is a hybrid between a deformed CT
and the cCBCT method. The planning CT is deformed to the CBCT
geometry and mismatching low density regions (either in the plan-
ning CT or the CBCT), are replaced with values from the cCBCT. One
great advantage of these methods is that they are quite general
and require no additional HU calibration, or training. Both meth-
ods have recently been validated with excellent results by several
clinics using different delivery systems and focusing on different
body sites.*!1-43
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Beam model

The phase space of the proton beam is modeled by an energy
spectrum in combination with a bivariate Gaussian distribution
that describes the spatial-angular phase space of the beam.**5
The energy spectrum is discretized in bins with an energy de-
pendent width corresponding to 0.2 mm range in water. In addi-
tion, the output of the system is modeled by a factor that relates
the number of protons that shall be simulated to the dose mon-
itor signal, where the output optionally can be defined to relate
to physical dose, or to 1.1 scaled dose. If physical dose is selected,
a constant factor RBE-model must be chosen for plans using that
beam model. The phase space and output parameters for several
nominal beam energies are determined in the beam modeling and
are stored in the beam model. When the dose engine calls for the
phase space of an arbitrary energy, the parameters are determined
from the stored energies by linear interpolation. The interpolated
energy spectrum is determined by a weighted average of neighbor-
ing energy spectra in relation to the mean energy of the spectra.
It should be noted that the interpolation also works for systems
with discrete energies, which means that all energies do not have
to be included in the beam model. The beam model also stores the
virtual source axis distance (VSAD) that may differ in the X and Y
scanning directions but any variation with energy is not accounted
for.

The beam modeling that extracts the phase space parameters
from measurements is performed in a separate RayStation appli-
cation named RayPhysics. In the beam modeling, the energy spec-
tra are determined from measured integrated depth dose curves
in water (IDDs) by a least-squares fit of precalculated mono en-
ergetic IDDs, simulated using a generic spot size and integrated
laterally to a radius matching the size of the Bragg peak cham-
ber used in the measurements. This method has been demon-
strated“® to perfectly compensate for the well-known problem of
missing dose due to the limited size of the used detector.*’*8 The
spatial-angular distribution moments of the bivariate Gaussian are
determined from lateral profiles measured in air from at least 3
depths at each energy, while the output constants are derived from
dose of single energy scanned fields measured at mid-depth in
water.

Some delivery systems generate significant non-Gaussian tails
in the spot, which give rise to low dose far from the central beam
axis. When such systems are modeled assuming single Gaussian
spot distributions, the effect is manifested as an incorrect dose
level for smaller targets.*°->! Although the tails may not be very
Gaussian in shape, it has been shown that the output results can
be significantly improved by adding a second Gaussian to the spot
distributions.*?->! The RayStation beam model supports the addi-
tion of a secondary Gaussian function. Several such double Gaus-
sian RayStation beam models have been created,”*>2:>3 of which
some are in clinical use .

Since the transport of protons through range shifters and aper-
tures is explicitly included in the MC dose engine, only geometrical
measures and material properties of those devices are defined in
the beam model, without the need for additional measurements.

Monte Carlo transport mechanism

The RayStation Monte Carlo code transports primary protons
and secondary ions (protons, deuterons, and alphas). A Class II
transport method>* is applied for the primary and secondary
protons, while nuclear absorption is neglected for the secondary
deuterons and alphas.

Neutral reaction products (neutrons and gammas) are not trans-
ported, but their fractions of the absorbed energy are included in
the energy balance and considered to leak out. Generation and

transport of delta electrons are not considered, since the released
electrons have on average a very short range compared to the size
of a voxel.>

Energy loss by electronic ionization is determined on the fly
by numerical integration of the Bethe-Bloch stopping power equa-
tion, where the shell and density correction terms have been
omitted since they are only of importance for energies well be-
low and above those of interest for therapeutic protons.’® En-
ergy loss straggling is handled by the Bohr approximation,® while
multiple scattering is determined using the theory of Goudsmit-
Saunderson.>’>8

The transport mechanics, i.e., the method of propagating ions
through the discretized patient and the incorporation of the elec-
tromagnetic processes (ionization energy loss, energy loss strag-
gling and multiple coulomb scattering (MCS)), are deeply inter-
twined. The RayStation MC dose engine employs the so-called
random hinge method, originally developed for electron/positron
MC codes,”® where the transport is divided into short and long
steps. lonization energy loss is evaluated for the short steps, which
equals the intersection length of the voxels, while energy loss
straggling and lateral deflection through MCS is evaluated for the
longer steps. The deflection point (or hinge point) is randomly
sampled along the longer hinge steps, whose total length corre-
sponds to 10% of the particle kinetic energy at the beginning of
the step. The hinge steps are created until the kinetic energy has
fallen below 30.75 MeV, after which MCS is no longer evaluated.
This MCS energy threshold is set to 5 MeV for transport in range
shifters and other energy absorbing devices.®°

The modeling of non-elastic nuclear reactions is data-driven
and based on a cross-section data library derived from published
ICRU63 data.! Elastic scattering of protons on hydrogen and on
nuclei are included through parameterized models of the absorp-
tion probabilities and angular differential cross-sections.

For a patient, the transport grid coincides with the dose scoring
grid. Beam modifiers are represented by rectilinear grids where the
grid dimensions are chosen to best represent each beam modifier.
The lateral resolution of block apertures depends on the size of
the aperture opening, starting at 0.5 mm for large apertures and
going down to 0.2 mm for aperture with an opening area of 10
cm? and smaller. The gaps between different transport grids (e.g.,
the air gap between a range shifter and the patient) are treated as
vacuum.

To comply with current prescriptions and normal tissue con-
straints, the RayStation MC dose engine reports physical dose as
dose to a small water cavity embedded in the local medium, i.e., as
dose-to-water. When comparing dose from RayStation to other MC
algorithms, it should be kept in mind that most general-purpose
MC codes report dose-to-medium, which for hard bone tissue can
be as much as 10% lower than dose-to-water.? In addition to phys-
ical dose, the MC dose engine also computes LETy in water.5> LET
from primary and secondary protons are included but LET from
heavier fragments are not. This omission is mainly motivated by
the fact that most current RBE models have been developed based
on LET that only considers primary and secondary protons.®* At
the end of a proton’s path, the LET integral is evaluated in small
steps down to an energy of 1 keV. One may note that this proper
handling gives a significantly higher LET,; close to end of range
compared to a system that simply computes the LET; as the en-
ergy loss divided by the step length in each voxel.

Statistics

If an MC dose is computed with too few simulated primary pro-
tons, the dose becomes noisy resulting in, e.g., smeared out DVH
curves.%> The number of primary protons needed to reach accept-
able accuracy is a complex matter that depends on, among other
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things, the voxel size and geometrical shape of the target. A bet-
ter measure than the number of simulated protons is the statis-
tical uncertainty of the dose in the target. RayStation computes
the statistical uncertainty by keeping track of the dose variation
in each voxel during the calculation and then reporting the un-
certainty as the mean variation in voxels with a dose higher than
50% of the maximum dose. The uncertainty is computed per beam,
which means that total statistical uncertainty in the target will be
smaller when several beams overlap. An MC dose in RayStation is
only considered to be clinical if the statistical uncertainty of each
beam dose falls below a user-defined threshold.

When a final dose is computed, the statistics can either be con-
trolled by providing the desired uncertainty per beam, or by ex-
plicitly stating the number of simulated protons per spot. In the
latter case, it is rather the mean number of protons per spot that
is used, since the actual number will be proportional to the spot
weight. In an optimization, only the number of protons per spot
is available for user control. All spots will be computed with the
same number of simulated protons, since the weights of the spots
are not known prior to optimization. This has 2 consequences: (1)
the simulated protons per spot in an optimization must be signif-
icantly higher than for a final dose, and (2) it is not possible to
compute the statistical uncertainty of the dose for an optimized
plan without final dose. Therefore, the dose after an optimization
is always labeled as approximate.

GPU implementation and performance

The RayStation MC dose engine is an in-house developed prod-
uct, tailored to the needs of proton therapy planning. Computa-
tional efficiency was a focus from the start, and even though the
first version (released in 2016) was implemented to run on a CPU,
the computational speed, both for optimization and final dose, was
considered fast enough for daily clinical practice.>>-°¢ An internal
survey revealed that a grand majority of the existing RayStation
proton clinics had switched from the analytical to the RayStation
MC dose engine within one year from this first clinical release. In
2020, the RayStation MC algorithm was migrated to run on graph-
ics cards (GPUs), which further increased the already fast dose
engine by a factor of 10-20.57 With these GPU accelerated calcu-
lations, most final dose computations have been shown to com-
plete in 3-7 seconds, and it was even noted that a large fraction
of this time was spent setting up the calculation rather than simu-
lating the actual proton transport.5” Considering these calculation
times, it is clear that the less accurate analytical dose algorithm
has played out its role, and that all dose calculations (optimiza-
tion, final dose, and robust evaluation) may be done using the MC
dose engine in RayStation.

Validation

The RayStation MC dose engine for proton PBS planning has
now been around for almost 7 years and has been clinically imple-
mented at more than 60 clinics. Furthermore, more than 35 peer
reviewed articles have been published to date, covering various as-
pects of the RayStation proton MC dose engine including validating
dose distributions of simple plans and QA plans in water,3>-46,68.69
measurements in various inhomogeneous®®:7%-7! and anthropomor-
phic phantoms®>:7273 including the use of animal tissue,’*7> the
effects of range shifters,>%:7476 apertures,6:77-80 and MLCs using
both static8! and dynamic®32 collimation. In addition, dose com-
putations for SRS and ocular treatments using both standard beam
lines, as well as specialized PBS beam lines where the range shifter
has been positioned as far as 70 cm upstream of the collimat-
ing aperture have also been validated.5%-77:78.80 Most studies have

been conducted by comparing the RayStation dose to measure-
ments, but several publications have also compared the RayStation
MC dose to the dose of general-purpose MC algorithms such as
Geant4/TOPAS,*>:83-85 FLUKA,%® and MCsquare.®6 The outcome for
a grand majority of these studies is very favorable and no clear
trend can be seen which would suggest a significant weakness in
the RayStation MC dose engine.

Plan Evaluation

The Plan evaluation module in RayStation includes a flexible
workspace to evaluate the resulting plan from the plan generation
process. In addition to evaluation of nominal plan doses, it is pos-
sible to create and evaluate dose distributions related to the origi-
nal plan: perturbed doses with shifts in density and patient setup
(translations and rotations), doses on additional images, deformed
doses, summed doses, and any custom dose that the user can pop-
ulate via scripting. The latter possibility opens for the creation of,
e.g., non-constant RBE doses, using the physical dose and LET, dis-
tribution as input.8” All plan and evaluation doses are displayed in
a dose tree with the plan doses as root nodes. If the beam model
was commissioned with an explicit constant RBE model, physical
dose will also be present in the leaf nodes. If LETy has been com-
puted in conjunction with final dose, it will also appear as a leaf
and can be inspected side-by-side with dose for the same plan. In
any of the patient planes it is possible to draw lines to visualize
1D dose and LETy distributions.

The plan evaluation module also hosts a dedicated workspace
for comprehensive analysis of the robustness of a treatment plan.
The workspace provides batch computation of multiple perturbed
scenarios, defined by a set of patient and density shifts, as well as
acquired or simulated image sets. The scenario doses are presented
in 2D views, DVH clusters and composite clinical goals. The clinical
goals list shows the percentage of passed scenarios, as well as val-
ues for the current scenario and the worst scenario. Additionally,
2D views and clinical goal evaluation of voxel-wise minimum and
maximum aggregate doses are included. These distributions have
been shown to provide a useful link to previous experience from
photon-based PTV planning.®8

Scripting

RayStation supports scripting using the CPython programming
language. With a few exceptions, almost all information contained
in the RayStation database is accessible, and most functions in the
RayStation Ul may also be executed through the scripting inter-
face. This enables the user to expand the standard functionality of
RayStation with new features for extended automation and data
analysis. External applications, like Excel or secondary dose com-
putation codes, can also be launched and supplied with RayStation
data through a script. By using the .NET framework, or a Python
plugin, it is possible to write Ul components, allowing for dynamic
user input and presentation of data. Scripts can be recorded from
interactions with the RayStation UI, and this is often a good way
to get started. Scripts can also be written directly in the RaySta-
tion script editor, but for more extended scripts the use of a ded-
icated Python IDE is recommended. Note that a few functions are
not accessible through scripting, such as the plan approval, which
requires user interaction to be deemed safe.

The possibilities with the RayStation scripting are practically
endless. A complete list of implemented RayStation scripts would
surely be almost infinitely long, but a few interesting topics and
examples include: complete plan generation (including image im-
port, structure definition, optimization and final dose calculation),
interplay dose tracking based on machine log files,?° customized



10 M. Janson, L. Glimelius and A. Fredriksson et al./Medical Dosimetry 49 (2024) 2-12

plan feasibility and sanity checks, tailored plan reports in Ex-
cel/Word/pdf, computation/extraction of IDDs and dose profiles,
gamma analysis, automatic detection and generation of markers
and clips, and automated dose validation.

Summary and Outlook

Since its first clinical use for proton therapy in 2014, RayStation
has established itself as a gold standard for proton TPSs, and is,
as of 2023, selected by a majority of new proton centers. Driving
factors behind this success are support for a multitude of differ-
ent treatment machines, a rich set of functionalities, ease of use,
high computation speed and high accuracy. The RayStation system
is further future-proofed by an architecture that facilitates rapid
adaptations to new planning techniques and new machine models
and features.

Over the past 15 years, proton therapy has evolved from mainly
being performed using broad beam techniques to almost exclu-
sively being delivered by PBS, and it is with PBS that proton ther-
apy has grown to what it is today. The technological development
has been rapid, not in the least when it comes to TPS advance-
ments. Important examples here include robust optimization and
near-instant Monte Carlo dose calculations, features that were in-
troduced to clinical practice through RayStation.

We foresee that technological development, combined with ra-
diobiological advances, will result in a more personalized radio-
therapy where protons and other modalities are used in an opti-
mal way, both in terms of treatment outcome and resource man-
agement. LET-driven optimization, which can move high LET from
OARs into target volumes, has just recently become available in
a clinical setting. In the near future, co-optimization of variable
RBE-weighted dose in combination with physical dose will have
the potential to further widen the therapeutic window. We also
expect to see daily online adaptation scenarios becoming part of
routine workflows, a necessary development for decreasing the rel-
atively large treatment margins used today, and thereby reaching
the full potential of proton therapy. This will be powered by dose
tracking and fast replanning techniques, with tight connections to
the delivery system. Deep learning auto-planning has already been
available for a few years but has not yet become widely spread,
partly due to complicated regulatory situations in some markets,
and partly due to the limited availability of DL models. However,
thanks to the increased treatment planning efficiency and con-
sistency of DL auto-planning, we are convinced that the interest
for implementing DL planning in the clinical workflow will grow
rapidly.

We further follow the development of more advanced delivery
techniques such as dynamic arcs, where high dose conformality
and a favorable LET distribution is combined with fast delivery. The
support for compact delivery systems using fixed beamlines and
seated patients will contribute to make proton therapy cheaper
and more widely available. Other emerging techniques are spatial
fractionation with or without the use of dedicated collimators and,
on longer term, delivery of conformal or transmission FLASH plans.
All these topics are focus areas at RaySearch and are available for
exploration and clinical trials in research versions of RayStation
and will, if clinical efficacy is demonstrated, become available in
future clinical releases.
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