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a b s t r a c t 

The use of scanned proton beams in external beam radiation therapy has seen a rapid development over 

the past decade. This technique places new demands on treatment planning, as compared to conven- 

tional photon-based radiation therapy. In this article, several proton specific functions as implemented in 

the treatment planning system RayStation are presented. We will cover algorithms for energy layer and 

spot selection, basic optimization including the handling of spot weight limits, optimization of the linear 

energy transfer (LET) distribution, robust optimization including the special case of 4D optimization, pro- 

ton arc planning, and automatic planning using deep learning. We will further present the Monte Carlo 

(MC) proton dose engine in RayStation to some detail, from the material interpretation of the CT data, 

through the beam model parameterization, to the actual MC transport mechanism. Useful tools for plan 

evaluation, including robustness evaluation, and the versatile scripting interface are also described. The 

overall aim of the paper is to give an overview of some of the key proton planning functions in RaySta- 

tion, with example usages, and at the same time provide the details about the underlying algorithms that 

previously have not been fully publicly available. 

© 2023 The Authors. Published by Elsevier Inc. on behalf of American Association of Medical 

Dosimetrists. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ntroduction 

RayStation is a treatment planning system (TPS) for exter- 

al beam therapy, brachytherapy, and boron neutron capture 

herapy (BNCT) that is developed, sold, and maintained by the 

wedish software company RaySearch Laboratories AB. RaySearch 

as founded in 20 0 0 and initially provided various plugins to

ther vendors’ TPSs, perhaps most notable the IMRT optimization 

ngine for the Pinnacle TPS (Philips). In 2008, RaySearch decided 

o develop and sell a complete TPS directly to the end user, and

he first clinical version of RayStation was released in 2010. This

rst release was limited to planning for IMRT and VMAT photon

reatments, but support for proton planning was part of the origi-

al scope and the very first RayStation contract was indeed signed

ith a proton clinic, the Westdeutsches Protonentherapie -zentrum 

ssen (WPE), in 2009. Mainly due to the lack of available dosimet-

ic data at these early days of proton therapy, the clinical release

f the proton planning in RayStation was delayed, but, in 2014,

he first proton treatment with a plan created in RayStation was

elivered at the Provision Center for Proton Therapy in Knoxville, 

ennessee. Since then, more than 100 clinics around the world 
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ave chosen RayStation for their proton treatment planning, a fig- 

re representing a majority of proton centers that are in opera-

ion, under construction, or in the planning stage. 1 This rapid suc-

ess can likely be explained by the fact that RayStation emerged

ust in time to support the near explosive growth in the number

f proton centers worldwide, and that RayStation was built with 

he needs of this relatively new modality in mind from day one.

obust optimization, 4D optimization, fast Monte Carlo (MC) dose 

alculations, and, in later years, linear energy transfer (LET) evalu- 

tion and optimization are just a few examples of features orig-

nally introduced in RayStation, that have added to its popular- 

ty. Another reason for the wide spread of RayStation in the pro-

on community is the fact that RayStation has been adapted to a

lurality of proton delivery systems. Today, RayStation is in clini- 

al use at sites with delivery systems from: IBA, Varian, Mevion,

itachi, Sumitomo Heavy Industries, P-Cure, Mitsubishi, ProNova, 

lus a variety of “home-built” synchrotron-based systems for reg- 

lar treatments and low-energy single scattering systems for ocu- 

ar treatments. RayStation further supports the following delivery 

echniques: pencil beam scanning (PBS), quasi-discrete PBS, line 

canning, double/single scattering (DS/SS), uniform scanning, and 

obbling. 

In this paper, we mainly focus on RayStation functionalities that 

re related to optimization and dose calculation of scanned pro- 
ion of Medical Dosimetrists. This is an open access article under the CC BY-NC-ND 
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on beams. Other vital functionalities in the planning process, such

s patient modeling, deformable image registration, and fallback

lanning have to some degree been covered in a previous general

verview of RayStation 

2 and will not be included here. The aim of

his publication is to present the planning process in general, and

o give a relatively detailed explanation of the fundamental algo-

ithms and their underlying mechanisms, descriptions that previ-

usly have only been partly available through product documents

 e.g. , users and reference manuals) and white papers. All descrip-

ions in this paper relate to RayStation 2023B, the currently latest

eleased clinical version. 

lan Optimization 

This section will describe the creation of a proton plan by op-

imization. We will start from the point where the empty beams

f a plan have already been created, but the patient-specific beam

evices and optimization settings are yet to be defined. 

ange shifters, apertures, and ridge filters 

For most proton delivery systems, an energy absorbing range

hifter must be used for shallow targets (ranges below 4-7 cm). In

ayStation, the use of a range shifter is normally selected manually

er field but may optionally be automatically added when needed.

RayStation supports the use of patient-specific collimators with

BS beams. The collimator may be a milled-out block aperture or

 multi leaf collimator (MLC). The dynamic MLC of the Mevion

yperscan delivery system 

3 is also supported. The aperture/MLC

hapes are determined prior to the optimization as the geometrical

rojections of the target(s) including user-defined, non-isotropic

argins. Blocking of risk organs may also be defined for the colli-

ation. When (MLC) collimation is done for each energy layer in-

ividually, the aperture openings are determined as the projection

f the target at the Bragg peak depth of each energy. 

Some delivery systems have very narrow pristine Bragg peaks

t lower energies and may benefit from using a ridge filter to de-

rease the number of energy layers and thereby the delivery time.

his is common for synchrotron-based systems, but a recent study

hows that ridge filters also can be used to significantly decrease

he delivery time for cyclotron systems and thereby increase the

indow for cases tolerating breath hold techniques. 4 RayStation

oes not have explicit support for ridge filters, but the effect can

e implicitly included via the beam data used for beam modeling.

or such ridge filter models, it is possible to include the identity of

he ridge filter in the exported DICOM plan. 

pot and energy layer selection settings 

Before an optimization starts, the target is analyzed in terms

f radiological depth to the most proximal and distal points over

he lateral plane, as well as its projection on the fluence plane

or each field. Based on this target information and a multitude

f user-defined settings, the energy layers and spot positions are

elected. The energy layer spacing can either be determined au-

omatically, based on the 80% widths of the Bragg peaks in the

achine model scaled by a user-defined factor, or be set to a con-

tant water-equivalent thickness (WET). The user may further de-

ne any number of additional proximal and distal energy layers.

hile these extra layers normally are not needed, there can be

ases with inhomogeneous geometries and small targets where the

aytracing used to define target depths is insufficient. 

The spot pattern can be chosen as hexagonal (default), or

quare, and the direction of the pattern can be chosen freely to,

.g. , align it with the fast scan direction of the delivery system. Just

ike for the energy layer selection, the spot spacing can be chosen
s automatic or as a fixed value. For the automatic option, the spot

pacing is determined as 1.06 times the average spot size (1 σ ) in

he patient at the Bragg peak depth, multiplied by a user-defined

caling constant. For most patients and delivery systems, the auto-

atic option with a scaling constant of 1 works well, but for sys-

ems with very large spots, a decrease of the spot spacing scaling

actor to ∼0.6 may improve the plan, especially when used in com-

ination with apertures. The lateral margin of the spot placement

elative to the target volume can also be determined using an auto-

atic with scale option, or as a constant value. The lateral margin

s needed to achieve full target coverage without creating hot spots

t the target border, but if a higher dose at the target edge can be

olerated, a target margin of 0 may be used to minimize the lat-

ral penumbra. When robust optimization is used, additional target

argins based on the magnitude of the uncertainties are automat-

cally added to these user-defined values. 

Other ways to control the spot placement in RayStation include

he OAR range margin, where Bragg peaks may only be placed up

o a given proximal distance from selected ROIs, as well as the op-

ion to set minimum and maximum radiological depths. The latter

unction may be used to avoid placing spots at the skin when shal-

ow tumors are treated, or when employing a field-in-field tech-

ique where a range shifter is only used for the shallow field. 5 

To mitigate effects from organ motion, it is further possible to

pecify a layer repainting strategy. The number of paintings can

ither be specified by a constant number per beam or be based

n a maximum meterset per layer or spot. 6 In the former case,

he number of paintings is the same for all layers in the beam,

hereas in the latter cases, the number of paintings varies over

he different ener gy layers. The repainting instruction can either be

ommunicated to the delivery system by a single number given per

nergy layer, or as an explicit delivery sequence with all repainted

ayers included in the DICOM file. 

ptimization algorithm 

The dose-based optimization of a treatment plan, also referred

o as inverse planning, is a technique where the clinical goals of

 plan are achieved through iterative adjustments of the plan pa-

ameters using a numerical optimization method. The optimization

rinciple of scanned proton beams is straightforward since the op-

imization variables are the spot weights, which contribute to the

ose in a linear fashion. The optimization engine in RayStation is

radient-based and uses a sequential quadratic programming algo-

ithm. 7 The algorithm employs a quasi-Newton approximation of

he Hessian of the Lagrangian that is updated using the Broyden-

letcher-Goldfarb-Shanno approach. In each iteration, a better ap-

roximation of the Hessian is obtained, but it also becomes more

omputationally costly to use. 8 As a consequence, the optimiza-

ion time increases superlinearly with the number of iterations, an

ffect that explains the sometimes rather extended optimization

imes for plans with a high number of spots and where the num-

er of iterations has passed ∼100. 

When a new optimization is started in RayStation, the target

s analyzed, and energy layers and spot positions are selected as

escribed in the previous section. A starting guess of the spot

eights is then determined by analytical means, 9 where it is as-

umed that the beam doses will completely overlap the target.

his method works very well for cases like single field uniform

ose (SFUD) optimization 

10 of a prostate but becomes less effec-

ive for cases where the beam doses do not overlap fully, such

s cranio-spinal plans, which may require a few extra iterations

or the dose to stabilize. The spot doses are then computed ac-

ording to the settings for the optimization dose calculation (see

ec. Statistics ). With the GPU-based MC algorithm this should nor-

ally be a fast process ( ∼10 seconds), but to avoid computing the
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ame dose twice, a so-called spot cache is implemented in RaySta-

ion which stores spot doses between consecutive optimizations. 

he spot doses are stored in the cache until a change is made

hat would either affect the dose calculation ( e.g. , a change in the

atient geometry or the snout position) or the spot pattern ( e.g. ,

ome change in the spot selection parameters, the definition of 

he target volume through the target optimization functions, or 

obustness settings). The importance of the spot cache becomes 

reater for demanding cases such as large volume/very small voxel 

lans, or a robust optimization using the option of accurate sce-

ario dose calculation (see further Sec. Approximate and accurate 

cenario doses ). 

The optimization continues until any of the 3 following criteria 

s fulfilled: (1) the change of the optimization objective function 

alue has fallen below the optimization tolerance for 3 consecu- 

ive iterations, (2) the maximum number of iterations has been

eached, or (3) no improving direction can be found. The tolerance

nd the max number of iterations are user-defined parameters. The 

ser can also terminate the optimization manually at any time. 

After an optimization has stopped, it may be started again using

he Continue optimization function which resumes the optimization 

rom the point it was stopped. This can be useful for example after

maller adjustments to the optimization functions, or when spots 

ave been manually removed. However, it should be noted that a

epeated use of continued optimizations may lead to a different so-

ution compared to that of a full restart. One reason being that the

pot filter function might remove spots several times. When possi- 

le, it is advisable to always start an optimization from scratch, at

east when a significant change to the plan setup or the optimiza-

ion problem has been made. 

ptimization functions 

An optimization problem in RayStation is formulated with an 

bjective function whose value is to be minimized iteratively by 

lteration of the spot weights. The objective function consists of 

ne or several user-defined optimization functions of the type: 

in/max/uniform dose, min/max DVH, min/max/target EUD, and 

ose fall-off, that operate on the dose within one ROI specified

or each function. 11 , 12 The dose fall-off objective is a max dose 

bjective that penalizes dose above a dose level that changes as

 function of the distance to the target and is therefore ideal to

se for penalizing the dose outside of the target volume, omitting

he need for creating ring structures around the target. The opti-

ization functions included in the objective function are assigned 

eights reflecting their relative importance. The value of an opti- 

ization function in RayStation is further divided by the volume 

f the ROI the function is specified for. This means that a hot spot

n a small ROI will have a larger impact on the optimization than

 similarly sized hot spot in a larger ROI. The value is also normal-

zed to the dose level of the function, meaning that the value of

he function is determined by the relative dose deviation. For ex-

mple, an overdose of 5 Gy for a max dose function with a dose

evel of 50 Gy will give the same penalty as an overdose of only

 Gy if the dose level is set to 10 Gy. Optimization functions with

mall dose levels must thus be given small weights in order not to

ominate the optimization. 

A unique feature in RayStation is that an optimization function 

an be defined as beam-specific, meaning that the function value 

s determined by the dose from a single beam. An objective func-

ion may include a mix of normal and beam-specific optimization 

unctions. The beam-specific functions can be used to create SFUD 

lans, but also allow for distributing the responsibility of treating 

arious sub-volumes of a target among the different beams. A typ-

cal example would be a head and neck case where a beam from

he left (right) should take care of the left (right) side of the head,
hus avoiding crossing of the brain stem. Beam-specific functions 

lso affect the spot selection. When a beam has been associated

ith a dose driving beam-specific function, the target used for the

nergy layer and spot selection of that beam will be replaced by

he ROI of the beam-specific function (plus any other ROIs that are

ssociated to a dose driving beam-specific function for the same 

eam). This feature may be used to control the spot placement in

n optimization, also when the optimization functions shall only 

epend on the total dose. To accomplish this, beam-specific func- 

ions with a weight equal to zero are used. An example of this

s the creation of graded junctions for a cranio-spinal irradiation 

CSI) where zero-weighted beam-specific functions can be used to 

efine the overlap of spots from adjacent fields, and thereby the

ength of the junctions, while total dose robust functions for the

ntire CTV are used to create the smooth junctions of the beam

oses, and a uniform total dose within the CTV. 

In RayStation, an optimization function can optionally be de- 

ned as a constraint that must be fulfilled in the optimization. The

ptimal solution to an optimization problem is then the one that

ives the best value of the objective function without violating any

f the constraints. While constraints sometimes can be useful in an

ptimization, they should be handled with some caution. If more 

han one constraint is defined for an optimization, it is of pivotal

mportance that they are not in mutual conflict so that all con-

traints in the optimization can be fulfilled. This is in opposition

o how optimization functions work, where the optimizer will find 

 well-defined (Pareto optimal) trade-off between conflicting func- 

ions. Another reason to be careful with an extensive use of con-

traint is that the convergence of the optimization becomes slower 

ompared to an optimization without constraints. A reason for this 

s that the optimization algorithm requires one gradient calcula- 

ion for the objective function, and an additional one for each con-

traint. Thus, it can speed up the treatment planning process to

un an initial optimization without constraints to see what can be

chieved, followed by adding constraints in a subsequent round of 

ptimization to precisely control, e.g. , the max dose. Furthermore, 

hen using constraints, it can be beneficial to include an identical

unction in the objective, to help steering the optimization in the

ight direction. 

RayStation also provides the possibility of defining optimization 

unctions on the minimum and maximum dose-averaged linear en- 

rgy transfer (LETd ) in addition to dose. Since LETd is a property

hat does not scale with fluence and dose, high LETd values may

e found outside the target in volumes where the dose is so low

hat the LETd level has no significant biological impact. To exclude 

hese low dose volumes from the optimization, the max LETd func- 

ion is accompanied with a dose threshold that filters out those

olumes in the function evaluation. Just like any other function 

n RayStation, the LETd functions may be defined as being beam- 

pecific, constraints, and/or robust. Robust max LETd functions may 

e a particularly important use-case for patients with risk organs 

ust distal to a target, considering the range uncertainty and the

xpected elevated biological effective dose at the distal end of a

roton field. 13 

pot and energy layer weight limits 

Most proton PBS delivery systems have a lower limit for the

pot meterset. In order to create a deliverable plan, a common ap-

roach has previously been to apply a spot filtering step after the

ptimization is completed. 14 However, this post-processing filter- 

ng can seriously deteriorate plan quality, especially for plans with 

everal overlapping fields. 14 In RayStation, the minimum spot me- 

erset is instead considered in the optimization, where the filtering 

s performed after a user-specified number of iterations, typically 

t iteration 20. The optimization then continues so that plan qual-
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since then. 
ty can be restored. At the spot filtering iteration, the spots in each

nergy layer are sequentially filtered out and the weight of a re-

oved spot is added to the immediately following spot to avoid an

xcessive removal of spots with weights just below the minimum

imit. To ensure that the spot weights do not fall below the mini-

um spot weight when the optimization continues, the minimum

pot weight is used as a lower bound in the continued optimiza-

ion. It is also possible to define an upper limit to the spot weights,

hich is then enforced from the beginning of the optimization. If

he spot filtering iteration is set to 0, no spots will be removed,

nd the lower and upper spot weight bounds are applied from the

rst iteration. This can for example be useful when Continue opti-

ization is used in RayStation. 

It is further possible to define a minimum energy layer meter-

et in RayStation, which removes all energy layers whose meterset

alls below the limit at the spot filtering iteration. The energy layer

ower limit is then included as a lower bound in the continued op-

imization. 

The default spot and energy layer weight limits are defined in

he beam model. However, those values may be overridden on a

lan-by-plan basis by the user. For example, by using a higher min-

mum spot weight limit than that stipulated by the delivery sys-

em, the user has the possibility to explore the balance between

elivery speed and plan quality. 

After the spot filtration, the spot sequence can optionally be

orted, taking different scan speeds in the x- and y-directions into

ccount, to make the traversal of the scanning beam as fast as pos-

ible. 

obust Optimization 

In traditional treatment planning, uncertainties during the 

etup and delivery are handled by expanding the clinical target

olume (CTV) with a uniform margin to create a planning target

olume (PTV). 15 However, due to the higher dose conformity and

he introduction of range uncertainties in proton planning, the PTV

oncept does not always work so well for this modality. 16 The so-

ution to this problem is robust optimization, where the uncertain-

ies are explicitly included in the optimization, which then is per-

ormed on the CTV and original risk organ volumes directly. 17 , 18 

RayStation employs a scenario-based robust optimization tech- 

ique, where the dose in each iteration is computed for a num-

er of “error” scenarios, each representing a specific combination

f setup error, density error, and patient image set. In RayStation,

ach optimization function can optionally be labeled as a robust

unction and the objective function may contain a mix of non-

obust and robust functions. 

The uncertainties can be treated as systematic, meaning that

he same error occurs throughout the treatment course, or ran-

om, meaning that different errors may occur in each fraction. For

ystematic uncertainties, RayStation employs worst-case (or “min- 

max”) optimization, 17 where the optimization aims to minimize

he function value in the worst scenario. If more than one robust

unction is included, the optimization strives to minimize the sum

f the function values of all robust functions in the worst scenario.

he reason for considering the worst-case sum of function values

nstead of, e.g. , the sum of the worst-case value for each function

ndividually is that only physically realizable scenarios should af-

ect the optimization, and not unphysical combination scenarios

here, for example, the patient moves to the left when the CTV

unction is evaluated but to the right when the OAR function is

valuated. 19 

When the uncertainties are treated as random (or interfrac-

ional), a scenario in the optimization is constructed as the sum of

he dose in each fraction of the treatment course, where one error

cenario is randomly selected for each fraction. 20 The optimization
s performed on the average function value of all simulated treat-

ent course scenarios. To cover the many possible combinations

f errors in the fractions, a large number of treatment course sce-

arios should be included in the optimization (the default num-

er is 30 0 0 for 3 systematic density errors). In the limit of a sin-

le fraction treatment course, the random uncertainty option will

ive a similar result as if systematic uncertainties had been consid-

red, 21 while in the limit of many fractions, the random optimiza-

ion will give the same result as optimizing the average dose of

ll considered single fraction scenarios. When random uncertain-

ies are considered, the resulting plan may underdose the target

r overdose the OARs in the nominal scenario, i.e. , the case where

o uncertainty is considered. To maintain the dose of the nomi-

al scenario, non-robust functions can be applied to the structures

hat have been associated with random robust functions. 

Only setup errors and patient images can be handled as random

ver the fractions, while the density errors are always considered

o be systematic. 

etup and density error scenario sampling 

The number of scenarios in a robust optimization depends on

he magnitude of the setup and range uncertainties. For setup er-

ors ( es ) up to 5 mm, 2 initial setup scenarios are created for each

imension: (- es , es ) giving a total of 7 initial setup scenarios for 3

patial dimensions, including the non-shifted nominal scenario. For

ensity errors ( ed ) up to 5%, 2 initial density scenarios are created

iving a total of 3 initial density scenarios (- ed , 0, ed ). Each combi-

ation of initial setup and density scenarios is then considered re-

ulting in a total of 21 scenarios for the optimization assuming sys-

ematic errors. For larger uncertainties, additional initial scenarios

re created to ensure that the scenario sampling is not too sparse.

hese extra scenarios may be created both along the major setup

rror axes, as well as in diagonal directions depending on the pro-

ected magnitude of the setup errors in these directions. 

When the error scenarios are created for the optimization, the

atient setup may be chosen to be the same for all beams in a

lan, to be different (independent) for beams belonging to differ-

nt isocenters, or to be different for all beams. This choice will

reatly affect the number of evaluated error scenarios in the op-

imization. In the example above, with 7 setup scenarios, it is as-

umed that the setup error is the same for all beams in the plan.

f we instead assume that the plan has 2 different isocenters with

 beams associated to each isocenter and we use the indepen-

ent isocenter option, the number of initial spatial error scenar-

os becomes 72 = 49, resulting in a total of 147 scenarios when

ombined with the density scenarios. If we now assume that the

etup uncertainties are independent for all 4 beams, the spatial er-

or scenarios become 74 = 2401, resulting in a total of 7203 sce-

arios. Although optimization with this large number of scenarios

s fully possible in RayStation, the optimization time will suffer. To

educe the number of scenarios when using independent isocen-

ers/beams, it is possible to restrict the independence to 1 or 2

irections. A suitable use case for systematic robust optimization

ith independent setup errors is the creation of graded junctions

f a 4-field CSI case, with 2 fields sharing an isocenter in the brain

nd with 2 additional fields, each with separate isocenters along

he spine. 22 Here we use the independent isocenter option, but

nly to be evaluated as independent in the superior-inferior direc-

ion along the spine. If we further only consider setup errors (since

ensity errors affect the dose only marginally due to the shallow

arget), the problem reduces to manageable 33 + 4 = 31 scenarios,

hich will optimize swiftly. The independent setup error option in

ayStation was indeed originally developed with the CSI case in

ind, although the function has found a considerable wider use
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D optimization 

4D optimization is a technique where multiple images of the 

atient are considered simultaneously in an optimization. The 

ost wide-spread example is probably the 4D optimization of a 

ung case using a 4D image dataset, a technique that for protons

as been shown to be superior compared to the traditional method

f optimizing on an average CT using an ITV. 23 , 24 

While robust optimization of a 4D image dataset may be the

bvious use case for 4D robust optimization, there are also other

sages. One interesting example is the mitigation of unknown air 

avities for a pelvic patient. This can be accomplished in RaySta-

ion by first making a copy of the planning CT, assigning air as

verride material for selected volumes of the rectum/intestines in 

he copied CT, and then include it in a 4D robust optimization. 25 

hen the motion of an internal organ is not known, RayStation

an simulate this motion by creating a series of deformed images

sing the Simulate organ motion tool, images that then can be used

n a 4D optimization. A typical example here is the daily random

otion of the prostate. 

4D optimization is a natural extension of the scenario based ro-

ust optimization in RayStation, where the additional images sim- 

ly form additional scenarios. It may be used in combination with

etup and density uncertainties, which then create additional sce- 

arios for each included image. As an example, if 5 images are

sed for the 21-scenario systematic error case described above, a 

otal of 5 × 21 = 105 scenarios will be evaluated in each iteration. 

When the multiple images are chosen to represent random, in- 

erfractional anatomical changes, optimization is performed using 

reatment course scenarios consisting of image and setup error 

raction scenarios as described for random setup errors above. In 

ddition to treating the multiple images as systematic or random, 

hey may also be chosen to represent “free breathing” (intrafrac- 

ional) motion. Optimization considering intrafractional motion is 

erformed on a dose that is the sum of equally weighted partial

oses computed on the individual images and deformed to the 

lanning image. In the absence of setup and density errors, the

umber of scenarios for a 4D optimized “free breathing” case is 

herefore always 1, although doses are computed on all included 

mages in each iteration. 

pproximate and accurate scenario doses 

In scenario based robust optimization, the individual spot doses 

ust be computed for every scenario before the optimization 

tarts. The scenario spot doses are then used to compute the to-

al dose in each iteration, which in turn is used to evaluate the

obust function values. In RayStation there are 2 options for com-

uting the scenario doses: the accurate and the approximate meth- 

ds. When accurate scenario doses are used, the scenario spot 

oses are explicitly computed in the same way as the nominal

pot doses in a non-robust optimization. To save computer mem- 

ry (RAM), only doses within structures associated to robust opti- 

ization functions are stored. This is the most accurate method 

ut may result in long optimization times and consume signifi-

ant amounts of RAM, especially when many scenarios are eval-

ated and when large structures ( e.g. , the External ROI) are associ-

ted with a robust function. To avoid excessive optimization times, 

he approximate option should be used. The scenario spot doses 

re then determined from the nominal spot doses by means of

inear interpolation of the neighboring spots in the same energy 

ayer (setup errors), and interpolation from neighboring spots with 

igher and lower energy (density errors). 26 To minimize the inter-

olation error, additional spot doses are computed in areas (po- 

ition and range/energy) where nominal spots are absent or too 

parse. 21 These auxiliary spots are only used in the approximate 
ose calculation and are not included in the spot map of the plan.

ven though the auxiliary spots are stored in the spot cache, new

pot doses must often be computed when robust plans using Ap-

roximate scenario doses are optimized a second time. This is be-

ause the spot filtering alters the spot pattern so that new auxiliary

pots have to be computed in subsequent optimizations. 

For RayStation robust plans employing a collimator, accurate 

cenario dose computation is mandatory. This is motivated by the 

act that the influence of the collimator edge for different setup

cenarios does not lend itself well to the interpolation technique 

mployed by the approximate method. 

roton Arc Planning 

Proton arcs can in general be divided into 2 different types: dis-

rete and dynamic proton arcs. Discrete arcs (also known as static

rcs) employ step-and-shoot delivery over a large number of dis- 

rete gantry angles with multiple energy layers per angle, while 

ynamic arcs deliver the protons while rotating the gantry with 

ne energy layer per discretized direction. From a delivery per- 

pective, a discrete arc plan is equivalent to a normal PBS plan, but

ith more beams than usual. In RayStation, a discrete arc beam is

efined by its start and stop gantry angles, rotation direction, as

ell as the number of discrete directions. As input to the opti-

izer, the user also specifies the number of initial energy layers

o be setup over the arc beam, and the final number of energy lay-

rs in the resulting plan. Throughout the optimization, the lowest 

eighted energy layers are filtered out in several cycles to reach

he final number of energy layers at the iteration for spot filtering

iteration ∼100). This process aims at automatically selecting the 

ost beneficial energy layers over all directions. The main benefit 

an be seen in reduction of OAR doses and consequently in NTCP

alues. 27 Note that the number of iterations for a proton arc op-

imization needs to be higher than for a normal PBS plan, since

he energy layer selection process needs to be performed over a

ufficiently large number of iterations. 

Since current proton therapy systems do not yet support the 

elivery of multiple gantry angles in the same beam, RayStation 

an convert an arc plan into a conventional PBS plan in a single

lick. This means that the advantages of proton arc optimization 

ould be introduced at any proton PBS facility even today. How-

ver, the multitude of beams may result in long delivery times.

his could be remedied by partitioning the discrete arc plan into

ubplans to be delivered over different fractions. 28 

RayStation has support for dynamic arc optimization in research 

ersions, 29 and it will be available in the clinical system when the

reatment machines are capable of delivering protons while rotat- 

ng the gantry. Such technological development will speed up the 

elivery, both for dynamic and discrete arcs. With the advent of

pright treatments, a natural and cost-efficient alternative for pro- 

on arc delivery is to use a fixed proton beam in combination with

 rotating patient in a seated position. The algorithms for discrete

nd dynamic arc optimization in RayStation are equally well-suited 

or a rotating patient as for a rotating gantry. 

eep Learning Planning 

In the traditional planning workflow, it is often necessary to up-

ate the optimization functions iteratively to achieve the clinical 

oals of the plan. This can sometimes be a time-consuming process

nd sets high demands on the planner for complicated cases. With

utomatic deep learning (DL) planning, this workflow is replaced 

y a model that can generate high quality clinical plans consider-

bly faster. Each DL model is associated to a particular treatment

ite and protocol and needs to be trained on a large set of clini-

al plans. In addition to a reduction in time, DL planning provides
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igher consistency over a patient cohort and is not dependent on

ndividual planners. 

Automatic DL planning in RayStation consists of 2 steps. First,

 3D dose distribution is predicted by analyzing selected target

nd at risk organ structures of the particular patient. The model

ay subsequently make additional adjustments to the DL pre-

icted dose based on DVH metrics, such as increased target cov-

rage or sparing of certain OARs. 30 In the second step, a deliver-

ble plan is created based on the predicted dose. This is accom-

lished by a so-called dose mimicking optimization, which gener-

tes a plan with a dose as close to the predicted dose as possible.

t is important to note that the dose mimicking can be robustly op-

imized, thus ensuring that plan robustness is not lost in the dose

rediction. After the DL plan has been created, continued manual

ptimization is possible as an optional final step. 

The dose prediction model in RayStation is based on a 3D U-

et architecture, 31 and each model is trained on plan dose and se-

ected ROI geometries from a significant number of clinical cases

f the treatment site and protocol at hand. CT image data, or any

ther patient-specific data besides dose and ROIs, is not used. In

he training, the model parameters are iteratively updated to min-

mize the difference of the output 3D doses and the plan dose

istributions of the patients. The model training is currently per-

ormed at RaySearch in collaboration with partnering clinics. Note

hat other machine learning models than the 3D U-Net have been

reviously used in RayStation, e.g. , a random forest model. 32 

A recent study has shown that RayStation DL-generated proton

lans are of similar quality as traditionally optimized clinical treat-

ent plans, 33 and automatic DL planning for protons using RaySta-

ion is in regular clinical use for oropharyngeal cancer patients at

niversity Medical Center Groningen in the Netherlands. 32 It is ap-

roved for clinical use in countries accepting the CE marking ( e.g. ,

n Europe), as well as a few additional markets. 

ostprocessing 

Once a proton plan has been created, either using optimiza-

ion or DL-planning, RayStation offers a wide range of tools for

anual adjustments. The meterset of the plan may be automati-

ally, or manually adjusted to fulfill the prescribed dose. Individ-

al spots can be moved, added, or removed, and spot weights may

e adjusted. Spots below a specified weight may be filtered out,

lthough this is better handled by the optimization (see above).

perture, and static MLC openings may be edited by using a brush

ool in the beams eye view (BEV). Even the energies of energy lay-

rs can be manually edited. 

ose Computation 

In this section we will describe the proton dose calculation in

ayStation, including the material interpretation of the CT data,

nd beam model. We will only describe the MC dose engine, and

ot the analytical dose engine in RayStation. This is motivated by

he fact that MC has proven to be superior to analytical algorithms

or protons, 34 - 36 and that the MC dose calculation in RayStation

ow often is faster than the analytical. 

T to stopping power conversion 

The MC dose engine in RayStation requires a full material de-

cription of the patient in each voxel. The material composition is

xpressed as mass density, mass fraction of atomic elements, w(Z) ,

nd mean ionization energy, I . All cross-sections used in the dose

alculation, including stopping power, are then determined from

hese material properties. The material composition is determined

rom the CT image data, and from user-defined material overrides
f selected structures. For voxels covered by structures associated

ith a material override, this data is directly given by the prop-

rties of the override material. For the other voxels, the material

nformation is interpreted from the CT data by the user-defined CT-

o-mass-density, or CT-to-relative stopping power (RSP) calibration 

urves. The CT calibration curves are defined in RayPhysics (see be-

ow), but the method to determine them is outside the scope of

his paper. The elemental composition and mean ionization energy

f the voxels are determined by associating one of 75 CT mapping

aterials to each voxel. The CT mapping materials have been de-

ermined by interpolation from 16 established human tissue and

etal core materials originating from the ICRU 44 and ICRP 23 re-

orts. 37 , 38 When a CT-to-mass-density curve is used the mass den-

ity of a voxel is directly given by the calibration curve, while the

T mapping material associated to the voxel is the one that is clos-

st in mass density to the mass density of the voxel. It should be

oted that the mass density of the voxel is still the one given by

he calibration curve, and not by the CT mapping material. For CT-

o-RSP calibration, the associated CT mapping material will be the

ne that is closest in RSP to that of the voxel, as given by the cal-

bration curve. The mass density for the voxel is then determined

o that the voxel RSP from the CT calibration curve is exactly re-

onstructed in the dose calculation for the associated CT mapping

aterial at a proton energy defined with the CT-to-RSP calibration

urve. 

RayStation also supports the import of RSP image maps, which

an be produced by some dual-energy CT scanners. The RSP im-

ges can be used for planning and dose calculation as any other

T image in RayStation, and several studies have shown that the

ange uncertainty in plans based on RSP maps can be significantly

educed compared to plans based on conventional CTs. 39 , 40 These

mages are exported from the scanners as normal CT images and

he RSP values in the images have typically been converted to inte-

er values of similar magnitude as HU-based CT images. For these

mages, the CT-to-RSP calibration curve in RayStation will simply

omprise 2 points that will scale the imported values to absolute

SP, and no calibration of the curve is needed. 

ose calculation on CBCT 

In RayStation it is possible to compute the dose based on Cone

eam CTs (CBCTs) by the generation of synthetic CTs (sCT). This en-

bles the evaluation of the daily delivered dose without having to

ecord a re-CT, and may serve as a trigger for potential replanning.

or the current version of RayStation, an sCT cannot be used as a

lanning image in a new plan, but only for evaluation. 

RayStation hosts 2 algorithms for the creation of sCTs. The first,

he corrected CBCT algorithm (cCBCT), aims at removing artifacts

rom the CBCT image and converting the CBCT intensity values to

orrespond to the HUs of the planning image. This is an iterative

lgorithm where the HU conversion is first established by corre-

ating the intensity values in voxels of the CBCT, to correspond-

ng voxels in the planning CT by means of deformable registration.

ow-frequency artifacts in the CBCT are then filtered out and cor-

ected for, after which the process repeats. If the CBCT has a lim-

ted field of view (FOV), the missing volumes may be deformably

dded to the CBCT from the planning CT. The second method is the

irtual CT method (vCT), which is a hybrid between a deformed CT

nd the cCBCT method. The planning CT is deformed to the CBCT

eometry and mismatching low density regions (either in the plan-

ing CT or the CBCT), are replaced with values from the cCBCT. One

reat advantage of these methods is that they are quite general

nd require no additional HU calibration, or training. Both meth-

ds have recently been validated with excellent results by several

linics using different delivery systems and focusing on different

ody sites. 41 - 43 
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eam model 

The phase space of the proton beam is modeled by an energy

pectrum in combination with a bivariate Gaussian distribution 

hat describes the spatial-angular phase space of the beam. 44 , 45 

he energy spectrum is discretized in bins with an energy de-

endent width corresponding to 0.2 mm range in water. In addi-

ion, the output of the system is modeled by a factor that relates

he number of protons that shall be simulated to the dose mon-

tor signal, where the output optionally can be defined to relate

o physical dose, or to 1.1 scaled dose. If physical dose is selected,

 constant factor RBE-model must be chosen for plans using that

eam model. The phase space and output parameters for several

ominal beam energies are determined in the beam modeling and 

re stored in the beam model. When the dose engine calls for the

hase space of an arbitrary energy, the parameters are determined 

rom the stored energies by linear interpolation. The interpolated 

nergy spectrum is determined by a weighted average of neighbor- 

ng energy spectra in relation to the mean energy of the spectra.

t should be noted that the interpolation also works for systems

ith discrete energies, which means that all energies do not have

o be included in the beam model. The beam model also stores the

irtual source axis distance (VSAD) that may differ in the X and Y

canning directions but any variation with energy is not accounted 

or. 

The beam modeling that extracts the phase space parameters 

rom measurements is performed in a separate RayStation appli- 

ation named RayPhysics. In the beam modeling, the energy spec- 

ra are determined from measured integrated depth dose curves 

n water (IDDs) by a least-squares fit of precalculated mono en-

rgetic IDDs, simulated using a generic spot size and integrated 

aterally to a radius matching the size of the Bragg peak cham-

er used in the measurements. This method has been demon- 

trated 

46 to perfectly compensate for the well-known problem of 

issing dose due to the limited size of the used detector. 47 , 48 The

patial-angular distribution moments of the bivariate Gaussian are 

etermined from lateral profiles measured in air from at least 3

epths at each energy, while the output constants are derived from

ose of single energy scanned fields measured at mid-depth in 

ater. 

Some delivery systems generate significant non-Gaussian tails 

n the spot, which give rise to low dose far from the central beam

xis. When such systems are modeled assuming single Gaussian 

pot distributions, the effect is manifested as an incorrect dose 

evel for smaller targets. 49 - 51 Although the tails may not be very

aussian in shape, it has been shown that the output results can

e significantly improved by adding a second Gaussian to the spot

istributions. 49 - 51 The RayStation beam model supports the addi- 

ion of a secondary Gaussian function. Several such double Gaus- 

ian RayStation beam models have been created, 50 , 52 , 53 of which 

ome are in clinical use . 

Since the transport of protons through range shifters and aper- 

ures is explicitly included in the MC dose engine, only geometrical

easures and material properties of those devices are defined in 

he beam model, without the need for additional measurements. 

onte Carlo transport mechanism 

The RayStation Monte Carlo code transports primary protons 

nd secondary ions (protons, deuterons, and alphas). A Class II 

ransport method 

54 is applied for the primary and secondary 

rotons, while nuclear absorption is neglected for the secondary 

euterons and alphas. 

Neutral reaction products (neutrons and gammas) are not trans- 

orted, but their fractions of the absorbed energy are included in

he energy balance and considered to leak out. Generation and 
ransport of delta electrons are not considered, since the released 

lectrons have on average a very short range compared to the size

f a voxel. 55 

Energy loss by electronic ionization is determined on the fly 

y numerical integration of the Bethe-Bloch stopping power equa- 

ion, where the shell and density correction terms have been 

mitted since they are only of importance for energies well be-

ow and above those of interest for therapeutic protons. 56 En- 

rgy loss straggling is handled by the Bohr approximation, 56 while

ultiple scattering is determined using the theory of Goudsmit- 

aunderson. 57 , 58 

The transport mechanics, i.e. , the method of propagating ions 

hrough the discretized patient and the incorporation of the elec- 

romagnetic processes (ionization energy loss, energy loss strag- 

ling and multiple coulomb scattering (MCS)), are deeply inter- 

wined. The RayStation MC dose engine employs the so-called 

andom hinge method, originally developed for electron/positron 

C codes, 59 where the transport is divided into short and long

teps. Ionization energy loss is evaluated for the short steps, which

quals the intersection length of the voxels, while energy loss 

traggling and lateral deflection through MCS is evaluated for the 

onger steps. The deflection point (or hinge point) is randomly 

ampled along the longer hinge steps, whose total length corre- 

ponds to 10% of the particle kinetic energy at the beginning of

he step. The hinge steps are created until the kinetic energy has

allen below 30.75 MeV, after which MCS is no longer evaluated.

his MCS energy threshold is set to 5 MeV for transport in range

hifters and other energy absorbing devices. 60 

The modeling of non-elastic nuclear reactions is data-driven 

nd based on a cross-section data library derived from published 

CRU63 data. 61 Elastic scattering of protons on hydrogen and on 

uclei are included through parameterized models of the absorp- 

ion probabilities and angular differential cross-sections. 

For a patient, the transport grid coincides with the dose scoring

rid. Beam modifiers are represented by rectilinear grids where the 

rid dimensions are chosen to best represent each beam modifier. 

he lateral resolution of block apertures depends on the size of

he aperture opening, starting at 0.5 mm for large apertures and

oing down to 0.2 mm for aperture with an opening area of 10

m2 and smaller. The gaps between different transport grids ( e.g. ,

he air gap between a range shifter and the patient) are treated as

acuum. 

To comply with current prescriptions and normal tissue con- 

traints, the RayStation MC dose engine reports physical dose as 

ose to a small water cavity embedded in the local medium, i.e. , as

ose-to-water. When comparing dose from RayStation to other MC 

lgorithms, it should be kept in mind that most general-purpose

C codes report dose-to-medium, which for hard bone tissue can 

e as much as 10% lower than dose-to-water. 62 In addition to phys-

cal dose, the MC dose engine also computes LETd in water. 63 LET

rom primary and secondary protons are included but LET from 

eavier fragments are not. This omission is mainly motivated by 

he fact that most current RBE models have been developed based

n LET that only considers primary and secondary protons. 64 At 

he end of a proton’s path, the LET integral is evaluated in small

teps down to an energy of 1 keV. One may note that this proper

andling gives a significantly higher LETd close to end of range

ompared to a system that simply computes the LETd as the en-

rgy loss divided by the step length in each voxel. 

tatistics 

If an MC dose is computed with too few simulated primary pro-

ons, the dose becomes noisy resulting in, e.g. , smeared out DVH

urves. 65 The number of primary protons needed to reach accept- 

ble accuracy is a complex matter that depends on, among other
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hings, the voxel size and geometrical shape of the target. A bet-

er measure than the number of simulated protons is the statis-

ical uncertainty of the dose in the target. RayStation computes

he statistical uncertainty by keeping track of the dose variation

n each voxel during the calculation and then reporting the un-

ertainty as the mean variation in voxels with a dose higher than

0% of the maximum dose. The uncertainty is computed per beam,

hich means that total statistical uncertainty in the target will be

maller when several beams overlap. An MC dose in RayStation is

nly considered to be clinical if the statistical uncertainty of each

eam dose falls below a user-defined threshold. 

When a final dose is computed, the statistics can either be con-

rolled by providing the desired uncertainty per beam, or by ex-

licitly stating the number of simulated protons per spot. In the

atter case, it is rather the mean number of protons per spot that

s used, since the actual number will be proportional to the spot

eight. In an optimization, only the number of protons per spot

s available for user control. All spots will be computed with the

ame number of simulated protons, since the weights of the spots

re not known prior to optimization. This has 2 consequences: (1)

he simulated protons per spot in an optimization must be signif-

cantly higher than for a final dose, and (2) it is not possible to

ompute the statistical uncertainty of the dose for an optimized

lan without final dose. Therefore, the dose after an optimization

s always labeled as approximate. 

PU implementation and performance 

The RayStation MC dose engine is an in-house developed prod-

ct, tailored to the needs of proton therapy planning. Computa-

ional efficiency was a focus from the start, and even though the

rst version (released in 2016) was implemented to run on a CPU,

he computational speed, both for optimization and final dose, was

onsidered fast enough for daily clinical practice. 35 , 66 An internal

urvey revealed that a grand majority of the existing RayStation

roton clinics had switched from the analytical to the RayStation

C dose engine within one year from this first clinical release. In

020, the RayStation MC algorithm was migrated to run on graph-

cs cards (GPUs), which further increased the already fast dose

ngine by a factor of 10-20. 67 With these GPU accelerated calcu-

ations, most final dose computations have been shown to com-

lete in 3-7 seconds, and it was even noted that a large fraction

f this time was spent setting up the calculation rather than simu-

ating the actual proton transport. 67 Considering these calculation

imes, it is clear that the less accurate analytical dose algorithm

as played out its role, and that all dose calculations (optimiza-

ion, final dose, and robust evaluation) may be done using the MC

ose engine in RayStation. 

alidation 

The RayStation MC dose engine for proton PBS planning has

ow been around for almost 7 years and has been clinically imple-

ented at more than 60 clinics. Furthermore, more than 35 peer

eviewed articles have been published to date, covering various as-

ects of the RayStation proton MC dose engine including validating

ose distributions of simple plans and QA plans in water, 35 , 46 , 68 , 69 

easurements in various inhomogeneous 66 , 70 , 71 and anthropomor- 

hic phantoms 35 , 72 , 73 including the use of animal tissue, 74 , 75 the

ffects of range shifters, 36 , 74 , 76 apertures, 60 , 77 - 80 and MLCs using

oth static 81 and dynamic 3 , 82 collimation. In addition, dose com-

utations for SRS and ocular treatments using both standard beam

ines, as well as specialized PBS beam lines where the range shifter

as been positioned as far as 70 cm upstream of the collimat-

ng aperture have also been validated. 60 , 77 , 78 , 80 Most studies have
een conducted by comparing the RayStation dose to measure-

ents, but several publications have also compared the RayStation

C dose to the dose of general-purpose MC algorithms such as

eant4/TOPAS, 43 , 83 - 85 FLUKA, 68 and MCsquare. 86 The outcome for

 grand majority of these studies is very favorable and no clear

rend can be seen which would suggest a significant weakness in

he RayStation MC dose engine. 

lan Evaluation 

The Plan evaluation module in RayStation includes a flexible

orkspace to evaluate the resulting plan from the plan generation

rocess. In addition to evaluation of nominal plan doses, it is pos-

ible to create and evaluate dose distributions related to the origi-

al plan: perturbed doses with shifts in density and patient setup

translations and rotations), doses on additional images, deformed

oses, summed doses, and any custom dose that the user can pop-

late via scripting. The latter possibility opens for the creation of,

.g. , non-constant RBE doses, using the physical dose and LETd dis-

ribution as input. 87 All plan and evaluation doses are displayed in

 dose tree with the plan doses as root nodes. If the beam model

as commissioned with an explicit constant RBE model, physical

ose will also be present in the leaf nodes. If LETd has been com-

uted in conjunction with final dose, it will also appear as a leaf

nd can be inspected side-by-side with dose for the same plan. In

ny of the patient planes it is possible to draw lines to visualize

D dose and LETd distributions. 

The plan evaluation module also hosts a dedicated workspace

or comprehensive analysis of the robustness of a treatment plan.

he workspace provides batch computation of multiple perturbed

cenarios, defined by a set of patient and density shifts, as well as

cquired or simulated image sets. The scenario doses are presented

n 2D views, DVH clusters and composite clinical goals. The clinical

oals list shows the percentage of passed scenarios, as well as val-

es for the current scenario and the worst scenario. Additionally,

D views and clinical goal evaluation of voxel-wise minimum and

aximum aggregate doses are included. These distributions have

een shown to provide a useful link to previous experience from

hoton-based PTV planning. 88 

cripting 

RayStation supports scripting using the CPython programming

anguage. With a few exceptions, almost all information contained

n the RayStation database is accessible, and most functions in the

ayStation UI may also be executed through the scripting inter-

ace. This enables the user to expand the standard functionality of

ayStation with new features for extended automation and data

nalysis. External applications, like Excel or secondary dose com-

utation codes, can also be launched and supplied with RayStation

ata through a script. By using the .NET framework, or a Python

lugin, it is possible to write UI components, allowing for dynamic

ser input and presentation of data. Scripts can be recorded from

nteractions with the RayStation UI, and this is often a good way

o get started. Scripts can also be written directly in the RaySta-

ion script editor, but for more extended scripts the use of a ded-

cated Python IDE is recommended. Note that a few functions are

ot accessible through scripting, such as the plan approval, which

equires user interaction to be deemed safe. 

The possibilities with the RayStation scripting are practically

ndless. A complete list of implemented RayStation scripts would

urely be almost infinitely long, but a few interesting topics and

xamples include: complete plan generation (including image im-

ort, structure definition, optimization and final dose calculation),

nterplay dose tracking based on machine log files, 89 customized
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lan feasibility and sanity checks, tailored plan reports in Ex- 

el/Word/pdf, computation/extraction of IDDs and dose profiles, 

amma analysis, automatic detection and generation of markers 

nd clips, and automated dose validation. 

ummary and Outlook 

Since its first clinical use for proton therapy in 2014, RayStation

as established itself as a gold standard for proton TPSs, and is,

s of 2023, selected by a majority of new proton centers. Driving

actors behind this success are support for a multitude of differ-

nt treatment machines, a rich set of functionalities, ease of use,

igh computation speed and high accuracy. The RayStation system 

s further future-proofed by an architecture that facilitates rapid 

daptations to new planning techniques and new machine models 

nd features. 

Over the past 15 years, proton therapy has evolved from mainly

eing performed using broad beam techniques to almost exclu- 

ively being delivered by PBS, and it is with PBS that proton ther-

py has grown to what it is today. The technological development

as been rapid, not in the least when it comes to TPS advance-

ents. Important examples here include robust optimization and 

ear-instant Monte Carlo dose calculations, features that were in- 

roduced to clinical practice through RayStation. 

We foresee that technological development, combined with ra- 

iobiological advances, will result in a more personalized radio- 

herapy where protons and other modalities are used in an opti-

al way, both in terms of treatment outcome and resource man-

gement. LET-driven optimization, which can move high LET from 

ARs into target volumes, has just recently become available in 

 clinical setting. In the near future, co-optimization of variable

BE-weighted dose in combination with physical dose will have 

he potential to further widen the therapeutic window. We also 

xpect to see daily online adaptation scenarios becoming part of 

outine workflows, a necessary development for decreasing the rel- 

tively large treatment margins used today, and thereby reaching 

he full potential of proton therapy. This will be powered by dose

racking and fast replanning techniques, with tight connections to 

he delivery system. Deep learning auto-planning has already been 

vailable for a few years but has not yet become widely spread,

artly due to complicated regulatory situations in some markets, 

nd partly due to the limited availability of DL models. However,

hanks to the increased treatment planning efficiency and con- 

istency of DL auto-planning, we are convinced that the interest 

or implementing DL planning in the clinical workflow will grow 

apidly. 

We further follow the development of more advanced delivery 

echniques such as dynamic arcs, where high dose conformality 

nd a favorable LET distribution is combined with fast delivery. The

upport for compact delivery systems using fixed beamlines and 

eated patients will contribute to make proton therapy cheaper 

nd more widely available. Other emerging techniques are spatial 

ractionation with or without the use of dedicated collimators and, 

n longer term, delivery of conformal or transmission FLASH plans. 

ll these topics are focus areas at RaySearch and are available for

xploration and clinical trials in research versions of RayStation 

nd will, if clinical efficacy is demonstrated, become available in 

uture clinical releases. 
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